Skip to main content

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 5))

Abstract

In contrast to the laminar one-dimensional ZDN model, the three-dimensional cellular structure of homogeneous gaseous detonation has been firmly established. The structure consists of an ensemble of interacting transverse shock waves sustained by the energy release from chemical reactions. The frequencies of the transverse fluctuations spread over a wide spectrum, however a dominant wavelength (cell size) can usually be identified from the triple point trajectories inscribed on a smoked foil. Regularity of the smoked foil pattern reflects the frequency (or wavelength) spectrum of the transverse wave oscillation. The recent results have demonstrated that the correlations between the dynamic detonation parameters and the dominant cell size alone are inadequate. The cell regularity, as characterized by a stability parameter, must necessarily also play an important role. Recent experiments, aswell as numerical simulations, have confirmed the essential role of transverse waves on the propagation mechanism. Damping of the transverse waves of an established C-J detonation by acoustic absorbing walls leads to decoupling of the reaction zone from the leading shock. Absorbing walls also suppress flame acceleration and transition to detonation even in the presence of obstacles. The role played by transverse shocks is credited to vorticity generation via initial interactions (Mach reflections and shear layers) and to the baroclinic mechanism of pressure and density gradient field interactions. The continuous spectrum of burning rates suggests no clear distinction can be made regarding the deflagration and the detonation mode of combustion. Shock waves due to pressure fluctuations are an integral part of the compressible turbulence in addition to velocity fluctuations from eddy motion. In terms of mechanism, there appears to be no sharp distinction between turbulent deflagration and detonation. However, the detonation is a unique self-sustained spatio temporal structure that is independent of boundary conditions. It is on this basis that one can define a detonation wave. Interpreting the detonation as an ordered structure in a highly non-equilibrium medium, it may be regarded as localized states of non-linear fields. The recent development in non-linear field theory may offer an interesting approach to further understanding of the fundamental physics involved. It appears that current experimental diagnostic techniques and numerical computation capabilities can in general give more detailed information on the detonation structure than can be utilized and interpreted adequately. It is suggested that future directions should aim at the choice of a novel global length scale (e.g. hydrodynamic thickness) other than the cell size to characterize the wave thickness. Together with an appropriate stability parameter that measures the spectrum of transverse fluctuations (or cell regularity), it is proposed that the data for the dynamic parameter be re-examined to achieve a more appropriate correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Strehlow, R. “Fundamentals of Combustion” (1983) Robert Krieger Publishing Co. Inc., Chapter 9.

    Google Scholar 

  2. Fickett, W. and Davis “Detonation” University of California Press (1979).

    Google Scholar 

  3. Nettleton, M.A. “Gaseous Detonations” Chapman and Hall (1987).

    Book  Google Scholar 

  4. Soloukhin, R.I. “Shock Waves and Detonations in Gases” Mono Book Corp. (1966).

    Google Scholar 

  5. Shchelkin, K.I. and Troshin Ya.K. “Gasdynamics of Combustion” Mono Book Corp. (1965).

    Google Scholar 

  6. Toong, T.Y. “Combustion Dynamics” McGraw Hill (1983).

    Google Scholar 

  7. Lee, J.H.S. “Dynamic Parameters of Gaseous Detonations” Ann.Rev. Fluid Mech. 16 (1984).

    Google Scholar 

  8. Vasiliev, A. A. , Gavrilenko, T.P. and Topchian, M.E. (1972) Astronaut. Acta 17, pp. 499–500.

    Google Scholar 

  9. Edwards, D. H. , Jones, A. T. and Phillips, D. E. J.Phys.D., Appl. Phys. vol.9 (1976), pp. 1331–1342.

    Article  ADS  Google Scholar 

  10. Wagner, H. G. 9 th Symp. (Int.’l.) on Combustion (1963), pp.454–60.

    Google Scholar 

  11. Shepherd, J. , Moen, I., Murray, S. and Thibault, P.21st Symp. (Int’l.) on Combustion (1986), pp. 1649–1657.

    Google Scholar 

  12. Ul’yanitskii, V.Yu. Fizika Goreniya Vzryva 17, 127 (1981).

    Google Scholar 

  13. Manzhalei, V.I., Fizika Goreniya Vzryva 13 (3), pp. 47–4772 (1977).

    Google Scholar 

  14. Moen, I . O. , Sulmistras, A., Thomas, G. O. , Bjerketvedt, D., Thibault, P. Prog, in Astro, and Aero. Vol.106, pp. 220–243 (1986).

    Google Scholar 

  15. Bull, D.C., Elsworth, J. and Shuff, P. (1982) Comb, and Flame 45(1), pp.7–22.

    Article  Google Scholar 

  16. Fickett, W. and Wood, W. Phys. Fluids 9: 903–916 (1966).

    Article  ADS  Google Scholar 

  17. Fickett, W. , Jacobson, J.D. and Schott, G. AIAA Jourl.10: 514–516 (1972).

    Article  ADS  Google Scholar 

  18. Abouseif, G. and Toong, T.Y. Comb, and Flame 45: 67–94 (1982).

    Article  Google Scholar 

  19. Moen, I.O., Funk, J. , Ward, S. , Ruder, G. and Thibault, P.Prog, in Astro, and Aero. Vol. 94 (1985), pp. 55–77.

    Google Scholar 

  20. Taki, S. and Fujiwara, T. AIAA Jourl. vol.16, No.1, pp. 73–77 (1978).

    Article  ADS  Google Scholar 

  21. Oran, E. S. , Boris, J.P., Young, T. , Flanigan, M. , Burks, T. and Picone, M. 18th Symp. (Int’l.) on Comb. , p. 1641 (1981).

    Google Scholar 

  22. Taki, S. and Fujiwara, T. AIAA Prog, in Astro. and Aero.Vol.94, pp. 186–200 (1984).

    Google Scholar 

  23. Liboutin, J. C. , Dormal, M. and Van Tiggelen, P. J. Prog, in Astro. and Aero. 26, p. 358 (1981).

    Google Scholar 

  24. Sugimura,T., Fujiwara,T. and Lee,J.H. “Cellular Detonations-Instability and Substructure”, paper presented at the 22nd Symp. (Int’l.) on Comb., Seattle, August 1988.

    Google Scholar 

  25. Oran, E. S. , Young, T. R. , Boris, J.P. , Picone, J.M. and Edwards, D.H. 19 th Symp. (Int’l.) on Comb. , pp. 573–582 (1982).

    Google Scholar 

  26. Fujiwara,T. and Reddy,K.V. “Propagation Mechanism of Detonation -Three Dimensional Phenomenon” Memoirs of the Faculty of Engineering, Nagoya University, Vol.41, No.1(1989).

    Google Scholar 

  27. Benedick, W. , Knystautas, R. and Lee, J.H. “Large Scale Experiments on the Transmission of Fuel-Air Detonations from Two-Dimensional Channels”,Dynamics of Shock Waves,Explosions and Detonations, Prog. in Astro, and Aeron., Vol.94, pp.546–555 (1984).

    Google Scholar 

  28. Lee, J.H. in “Fuel-Air Explosions”, p. 157. Univ. of Waterloo Press (1982).

    Google Scholar 

  29. Benedick, W. , Guirao, C. , Knystautas, R. and Lee, J.H. Prog, in Astrp. and Aero. , Vol. 106 (1985), pp. 181–202.

    Google Scholar 

  30. Dupre, G. , Knystautas, R. and Lee, J. Pro. Astro. and Aero. , Vol. 106,,p. 244 (1985).

    Google Scholar 

  31. Dupre, G. , Peraldi, O., Joannon, J., Lee, J.H. and Knystautas,R. “On the Limit Criterion of Detonation in Circular Tubes”, presented at the 12th International Colloquium on the Dynamics of Explosions and Reactive Systems, University of Michigan,23–28 July, 1989.

    Google Scholar 

  32. Dupre, G., Joannon, J., Knystautas, R. and Lee, J., “Unstable Detonations in the Near-Limit Regime in Tube,”, Presented at the 23rd International Symposium on Combustion, Orleans, France, July 1990.

    Google Scholar 

  33. Wolanski, P., Kauffman, C.W., Sichel, M. and Nicholls, J. 18th Symp, (Int’l.), on Comb. , pp. 1651–1660 (1981).

    Google Scholar 

  34. Dupre, G. , Peraldi, O., Lee, J.H. and Knystautas, R. Prog, in Astro, and Aero., Vol. 114, p. 248 (1988).

    Google Scholar 

  35. Chue, R., Clarke, J. and Lee, J. “On C-J Deflagrations”, to be published.

    Google Scholar 

  36. Reddy, K. V. , Fujiwara, T. and Lee, J.H. Memoirs of Faculty of Engineering, Nagoya University, Vol.40, No.1 (1988).

    Google Scholar 

  37. Teodorczyk, A. Private Communications.

    Google Scholar 

  38. Evan, M. W. , Gwen, F. I., Richeson, W.E. J. App. Phys. 26, pp. 1111–1113 (1955).

    Article  ADS  Google Scholar 

  39. Laffitte, P. Compt. Rend. 186, 95 (1928).

    Google Scholar 

  40. Shchelkin, K.I. Soviet Phys. JETP, 10, p. 823 (1940).

    Google Scholar 

  41. Lee, J.H. in “Advances in Chemical Reaction Dynamics”, Ed. Rentzepis, P. and Capellos, C.D. Reidel Pub. (1985).

    Google Scholar 

  42. Sivashinsky, G.I. Ann. Rev. Fluid Mech. , Vol. 15, pp. 179–199 (1983).

    Article  ADS  Google Scholar 

  43. Lighthill, M.J. “Effect of Compressibility on Turbulence” in Proc. of Cosmical Gas Dynamics (1949).

    Google Scholar 

  44. Gouldin, F.C. , Hilton, S.M. and Lamb, T. 22nd Symp. (Int’l.) on Comb., pp. 541–550 (1989).

    Google Scholar 

  45. Ezerskii, A.B., Rabinovich, M., Rentov, V. P. and Starobinets, L.M. Soviet Phys. JETP, 64(6) (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lee, J.H. (1991). Dynamic Structure of Gaseous Detonation. In: Borissov, A.A. (eds) Dynamic Structure of Detonation in Gaseous and Dispersed Media. Fluid Mechanics and Its Applications, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3548-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3548-1_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5571-0

  • Online ISBN: 978-94-011-3548-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics