Skip to main content

Monoamine Precursors in PET Research- Biochemical Issues and Functional Significance

  • Chapter
Brain Dopaminergic Systems: Imaging with Positron Tomography

Part of the book series: Developments in Nuclear Medicine ((DNUM,volume 20))

  • 64 Accesses

Abstract

Aromatic amino acid monoamine precursors can be applied in PET studies to study cerebral uptake of the amino acid neurotransmitter precursors and the subsequent intracerebral synthesis of monoamines. The modification of the intracerebral kinetics induced by the action of aromatic Lamino acid decarboxylase (AADC), a nonspecific enzyme which catalyses the decarboxylation of a large number of aromatic L-amino acids, permits the possibility to interpret kinetic information in terms of a biochemical process in vivo.The advantage of studying AADC characteristics in vivo is emphasised by the relatively high sensitivity of AADC in vitro for changes in the reaction milieu. Several important functional implications can be derived from studying monoamine precursor kinetics in vivo with PET.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agid Y. (1989) Dopaminergic systems in Parkinson’s disease. In: Quinn NP, Jenner PG, eds. Disorders of Movement: Clinical, Pharmacological and Physiological aspects. Academic Press, London, pp. 85–107

    Google Scholar 

  • Bowsher RR, Henry DP. (1986) Aromatic L-amino acid decarboxylase: biochemistry and functional significance. In: Boulton AA, Baker GB, Yu PH, eds. Neuromethods, Series 1: Neurochemistry. Humana Press, Clifton, New Jersey, pp. 33–77

    Google Scholar 

  • Bredberg E, Tedroff J, Aquilonius S-M, Paalzow L. (1990) Pharmacokinetics and effects of levodopa in advanced Parkinson’s disease. Eur J Clin Pharmacol 39:385–389

    PubMed  CAS  Google Scholar 

  • Buu N. (1989) Vesicular accumulation of dopamine following L-DOPA administration. Biochem Pharmacol 38:1787–1792

    PubMed  CAS  Google Scholar 

  • Caine DB, Langston JW, Martin WRW et al. (1985) Positron emission tomography after MPTP: observations relating to the cause of Parkinson’s disease. Nature 317:246–248

    Google Scholar 

  • Carlsson A, Hillarp N-Å, Waldeck B. (1962) A Mg2+-ATP dependent storage mechanism in the amine granules of the adrenal medulla. Med Exp. 6:47–53

    PubMed  CAS  Google Scholar 

  • Carlsson A, Lindqvist M, Magnusson T. (1957) 3,4Dihydroxyphenylalanine and 5- hydroxytryptophan as reserpine antagonists. Nature 180:1200

    CAS  Google Scholar 

  • Carlsson A, Rosengren E, Bertler Å, Nilsson J. (1957) Effect of reserpine on the metabolism of catechol amines In: Garattini S, Ghetti V eds. Psychotropic drugs, Elsevier, Amsterdam, pp. 363–372

    Google Scholar 

  • Carlsson A. (1987) Monoamines in the central nervous system: A historical perspective. In: Meltzer HY ed.Psychopharmacology: The third generation of progress. Raven Press, New York, pp. 39–48

    Google Scholar 

  • Chirakal R, Garnett ES, Schrobilgen GJ, Nahmias C, Firnau G.(1991) 18F and the dopamine pathway. Chem Brit 14:47–52

    Google Scholar 

  • Christenson JG, Dairman W, Undenfriend S. (1972) On the identity of DOPA decarboxylase and 5-HTP decarboxylase.Proc Natl Acad Sci USA 69:343–374

    PubMed  CAS  Google Scholar 

  • Eriksson T, Carlsson A. (1988) ß-adrenergic control of brain uptake of large neutral amino acids. Life Sci 42:1583–1589

    PubMed  CAS  Google Scholar 

  • Garnett ES, Firnau G, Nahmias C, Chirakal R. (1983) Striatal dopamine metabolism in living monkeys examined by positron emission tomography. Brain Res 280:169–171

    PubMed  CAS  Google Scholar 

  • Goldstein M, Fuxe K, Hökfelt T. (1972) Characterisation and tissue localization of catecholamine-syntheseizing enzymes. Pharmacol Rev 24:293–295

    PubMed  CAS  Google Scholar 

  • Hardebo JE, Edvinsson L, Owman C, Rosengren E. (1977) Quantitative evaluation of the blood-brain barrier capacity to form dopamine from circulating L-DOPA. Acta Physiol Scand 99:377–384

    PubMed  CAS  Google Scholar 

  • Hartvig P, Tedroff J, Lundqvist H, Bjurling P, Långström B. (1991a) Brain kinetics of 11C-labelled tryptophan and 5-hydroxy-tryptophan in the brain of the Rhesus monkey measured with positron emission tomography. Submitted to J Neural Transm

    Google Scholar 

  • Hartvig P, Lindner KJ, Tedroff J, Bjurling P, Chang Chi-Wei, Tsukada H, Watanabe Y, Långström B. (1991b) Positron emission tomographic studies on the selectivity andsaturation of 5-hydroxy-L-tryptophan decarboxylase in the monkey brain. Submitted to J Neural Transm

    Google Scholar 

  • Hartvig P, Lindner KJ, Tedroff J, Bjurling P, Hörnfelt K, Långström B. (1991c) Regional brain kinetics of 6fluoro-[11C]-L-DOPA and [11c] -L-DOPAfollowing COMTinhibition. A study in vivo using PET. Submitted to J Neural Transm

    Google Scholar 

  • Hartvig P, Ågren H, Reibring L, Tedroff J, Bjurling P, Kihlberg T, Långström B. (1991d) Brain kinetics of [ß-11C]-L-DOPA in humans studied by positron emission tomography. J Neural Transm (in press)

    Google Scholar 

  • Holz P. (1939) Dopadecarboxylase. Naturwissenschaften 27:724–725

    Google Scholar 

  • Koshimura K, Miwa S, Lee K, Fujiwara M, Watanabe Y. (1990) Enhancement of dopamine release in vivo from the rat striatum by dialytic perfusion of 6R-L-erythro-5,6,7,8tetrahydro-biopterin. J Neurochem 54:1391–1397

    PubMed  CAS  Google Scholar 

  • Leenders KL, Poewe WH, Palmer AJ, Brenton DP, Frackowiak RSJ. (1986) Inhibition of L-[18F]fluorodopa uptake into human brain by amino acids demonstrated by positron emission tomography. Ann Neurol 20:258–262

    PubMed  CAS  Google Scholar 

  • Lloyd KG, Davidson L, Hornykiewicz O. (1975) The neurochemistry of Parkinson’s disease: effect of L-DOPA therapy. J Pharmacol Exp Ther 195:453–464

    PubMed  CAS  Google Scholar 

  • Lloyd KG, Hornykiewicz O. (1972) Occurrence and distribution of aromatic L-amino acid (L-dopa) decarboxylase in the human brain. J Neurochem 19:1549–1559

    PubMed  CAS  Google Scholar 

  • MacKay AVP, Davies P, Dewar AJ, Yates CM. (1978) Regional distribution of enzymes associated with neurotransmission by monoamines, acetylcholine and GABA in the human brain. J Neurochem 30:827–839

    PubMed  CAS  Google Scholar 

  • Martin WRW, Palmer MR, Patlak CS, Calne DM. (1989) Nigrostriatal function in humans studied with positron emission tomography. Ann Neurol 26:453–464

    Google Scholar 

  • Masserano JM, Weiner N. (1983) Tyrosine hydroxylase regulation in the central nervous system. Mol Cell Biochem 53:129–152

    PubMed  Google Scholar 

  • Mc Millen BA, German DC, Shore PA. (1980) Functional and pharmacological significance of brain dopamine and norepinephrine storage pools. Biochem Pharm 29:3045–3050

    Google Scholar 

  • Melamed E, Hefti F, Wurtman RJ. (1980) DOPA and 5-HTP decarboxylase activities in rat striatum: effect of selective destruction of dopaminergic or serotoninergic input. J Neurochem 34:1753–1756

    PubMed  CAS  Google Scholar 

  • Melamed E, Rosenthal J, Reches A. (1990) Systemically administered dopamine: can it cross the blood-brain barrier after inhibition of monoamine oxidase ?Abstract. European Conference on Parkinson’S disease and Extrapyramidal disorders

    Google Scholar 

  • Melamed E. (1988) Role of the nigrostriatal dopaminergic neurons in mediating the effect of exogenous L-dopa in Parkinson’s disease. Mount Sinai J Med 55:35–42

    CAS  Google Scholar 

  • Melega WP, Luxen A, Perlmutter MM, Nissenson C, Phelps, M., Barrio, JR. (1990) Comparative in vivo metabolism of 6[18F]fluoro-L-DOPA and [3H]L-DOPA in rats. Biochem Pharmacol 39:1853–1860

    PubMed  CAS  Google Scholar 

  • Melega WP, Perlmutter MM, Luxen A, Nissenson HK, Grafton ST, Huang S-C, Phelps ME, Barrio JR. 4-[18F]Fluoro-L-mtyrosine: an L-3,4-dihydroxyphenylalanine analog for probing presynaptic dopaminergic function with positron emission tomography. J Neurochem 1989;53:311–314

    PubMed  CAS  Google Scholar 

  • Melzer HY, Lowy MT. (1987) The serotonin hypothesis of depression. In: Meltzer HY, ed. Psychopharmacology: Third generation of progress. Raven Press, New York, pp. 513–516

    Google Scholar 

  • Nagatsu T, Kato T, Nagatsu I et al. (1979) Catecholaminerelated enzymes in the brain of patients with parkinsonism and Wilson’s disease. In: Poirier LJ, Sourkes TL, Bédard PJ eds. Advances in Neurology, Raven Press, New York, pp. 283–292

    Google Scholar 

  • Oldendorf WH. (1971) Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am J Physiol 221:1629–1639

    PubMed  CAS  Google Scholar 

  • Partridge WM, Choi TB. (1986) Neutral amino acid transport at the blood-brain-barrier. Fed Proc 45:2073–2078

    Google Scholar 

  • Rahman MK, Nagatsu T, Kato T. (1981) Aromatic L-amino acid decarboxylase activity in central and peripheral tissues and serum of rats with DOPA and 5HTP as substrates. Biochem Pharmacol 30:645–649

    PubMed  CAS  Google Scholar 

  • Rahman MK, Nagatsu T. (1982) Demonstration of aromatic Lamino acid decarboxylase activity in human brain with L-DOPA and L-5-hydroxytryptophan as substrates by high-performance liquid chrmatography with electrochemical detection. Neurochem Int 4:1–6

    PubMed  CAS  Google Scholar 

  • Rosetti ZL, Silvia CP, Krajnc D, Neff NH, Hadjiconstantinou M. (1989) Modulation of aromatic L-amino acid decarboxylase via a2-adrenoceptors. J Neurochem 52:647–652

    Google Scholar 

  • Seeman P. (1987) Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse 1:133–152

    PubMed  CAS  Google Scholar 

  • Sen G, Bose KC. (1931) Rauwolfia serpentina, a new Indian drug for insanity and high blood pressure. Indian Med World 2:194–201

    Google Scholar 

  • Shore PA, Silver SL, Brodie BD. (1955) Interaction of reserpine on serotonin and lysergic acid diethylamide in brain. Science 122:284–285

    PubMed  CAS  Google Scholar 

  • Sims KL, Davies GA, Bloom FE. (1973) Activities of DOPA and 5HTP decarboxylases in rat brain: Assay characteristics and distribution. J Neurochem 20:449–464

    PubMed  CAS  Google Scholar 

  • Tedroff J, Aquilonius S-M, Hartvig P, Bredberg E, Bjurling P, Långström B. (1991a) Cerebral uptake and utilization of [ß-11C)-L-DOPA in Parkinson’s disease measured by positron emission tomography — relations to motor response. Acta Neurol Scand (in press)

    Google Scholar 

  • Tedroff J, Aquilonius S-M, Hartvig P, Lundqvist H, Bjurling P, Långström B. (1991b) Estimation of regional cerebral utilization of [11C]-L-3,4-dihydroxyphenylalanine (DOPA) in the primate by positron emission tomography. Acta Neurol Scand (in press)

    Google Scholar 

  • Tedroff J, Aquilonius S-M, Laihinen A, Rinne U, Hartvig P, Andersson J, Lundqvist H, Haaparanta M, Solin O, Antoni G, Gee A D, Ulin J, Långström B. (1990) Striatal kinetics of [11C]-(+)-nomifensine and 6-[18F]fluoro-Ldopa in Parkinson’s disease measured with positron emission tomography. Acta Neurol Scand 81:24–30.

    PubMed  CAS  Google Scholar 

  • Tedroff J, Hartvig P, Bjurling P, Andersson Y, Antoni G, Långström B. (1991c) Central action of benserazide after COMT inhibition demonstrated in vivo by PET. J Neural Transm (in press)

    Google Scholar 

  • Tsukada Y, Kishimoto H, Nagai K. (1975) Studies on amine metabolism in the monkey brain after administration of amine precursor. Contemporary Primatology, Karger, Basel, pp. 56–66

    Google Scholar 

  • Wade LA, Katzman R. (1975) Synthetic amino acids and the nature of L-DOPA transport at the blood-brain barrier. J Neurochem 25:837–842

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Hartvig P, Tedroff J et al. (1991) Elevation of 11C-dopamine turnover in vivo by peripheral administration of 6R-tetrahydrobiopterin in monkey striatum. In: Bleu et al. eds. Pteridine and related biogenic amines in neuropsychiatry, pediatrics and immunology. (in press)

    Google Scholar 

  • Ågren H, Reibring L, Hartvig P, Tedroff J, Bjurling P, Hörnfelt K, Andersson Y, Lundqvist H, Långström B.(1991) Low brain uptake of L-(11C)-5-hydroxytryptophan in major depression. A positron emission tomography study on patients and healthy volunteers. Acta Psychiat Scand (in press)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tedroff, J., Hartvig, P., Ågren, H., Bjurling, P., Långström, B. (1991). Monoamine Precursors in PET Research- Biochemical Issues and Functional Significance. In: Baron, J.C., Comar, D., Farde, L., Martinot, J.L., Mazoyer, B. (eds) Brain Dopaminergic Systems: Imaging with Positron Tomography. Developments in Nuclear Medicine, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3528-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3528-3_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5561-1

  • Online ISBN: 978-94-011-3528-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics