Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 127))

  • 35 Accesses

Abstract

Since its development in the early 1960s, coronary arteriography has been of great importance in the diagnosis and management of patients with ischemic heart disease [1, 2, 3]. Also for the next decade, it can be expected that, once the functional significance of a stenosis has been proved, anatomic data obtained at arteriography will remain necessary as a map for the cardiac surgeon or the interventional cardiologist to be informed about the correct sites where bypasses have to be placed or the balloon has to be inflated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sones F M and Shirey E K. Cine coronary arteriography. Mod Concepts Cardiov Dis, 31:735–738, 1962.

    Google Scholar 

  2. Judkins M P. Selective coronary arteriography. I. A percutaneous trans-femoral technic. Radiology, 89:815–824, 1967.

    PubMed  CAS  Google Scholar 

  3. Klocke F J. Measurements of coronary flow reserve: defining pathophysiology versus making decisions about patient care. Circulation, 76:1183–1189, 1987.

    Article  PubMed  CAS  Google Scholar 

  4. Hoffman J I E. Maximal coronary flow and the concept of coronary vascular reserve. Circulation, 70:153–159, 1984.

    Article  PubMed  CAS  Google Scholar 

  5. Grondin C M, Dyrda I Pasternac A, Campeau L, Bourassa M G, and Lesperance J. Discrepancies between cineangiography and postmortem findings in patients with coronary disease and recent revascularization. Circulation, 49:703–708, 1974.

    PubMed  CAS  Google Scholar 

  6. Hutchins G M, Bulkley B H, Ridolfi R L, Griffith L S C, Lohr F T, and Piasio M A. Correlation of coronary arteriograms and left ventriculogram with postmortem studies. Circulation,56:32–37, 1977.

    PubMed  CAS  Google Scholar 

  7. Arnett E N, Isner J M, and Redwood D R. Coronary artery narrowing in coronary heart disease: comparison of cineangiographic and necropsy findings. Ann Intern Med,91:350–356, 1979.

    PubMed  CAS  Google Scholar 

  8. Roberts W C and Jones A A. Quantitation of coronary arterial narrowing at necropsy in sudden coronary death. Am J Cardiol, 44:39–44, 1979.

    Article  PubMed  CAS  Google Scholar 

  9. Isner J M, Kishel J, and Kent K M. Accuracy of angiographic determination of left main coronary arterial narrowing. Circulation, 63:1056–1061, 1981.

    Article  PubMed  CAS  Google Scholar 

  10. Blankenhorn D H and Curry P J. The accuracy of arteriography and ultrasound imaging for atherosclerosis measurement: A review. Arch Pathol Lab Med, 106:483–490, 1982.

    PubMed  CAS  Google Scholar 

  11. Zir L M, Miller S W, Dinsmore R F, Gilbert J P, and Harthorne J W. Interobserver variability in coronary arteriography. Circulation, 53:627–632, 1976.

    PubMed  CAS  Google Scholar 

  12. Galbraith J E and Murphy M L Desoyza N. Coronary angiogram interpretation: Interobserver variability. JAMA, 240:2053–2059, 1981.

    Article  Google Scholar 

  13. Gould K L. Quantification of coronary artery stenosis in vivo. Circul Res, 57:341–353, 1985.

    CAS  Google Scholar 

  14. White C W, Wright C B, Doty D B, Hiratza L F, Eastham C L, Harrison D G, and Marcus M L. Does visual interpretation of the coronary arteriogram predict the physiological importance of a coronary stenosis? N Engl J Med, 310:819–824, 1984.

    Article  PubMed  CAS  Google Scholar 

  15. Harrison D G, White C W, Hiratzka L F, Doty D B Barnes D H, East-ham C L, and Marcus M L. The value of lesion cross-sectional area determined by quantitative coronary arteriography in assessing the physiologic significance of proximal left anterior descending coronary arterial stenoses. Circulation, 69:1111–1119, 1984.

    Article  PubMed  CAS  Google Scholar 

  16. Nissen S E and Gurley J C. Assessment of the functional significance of coronary stenoses. Is digital angiography the answer? Circulation, 81:1431–1435, 1990.

    Article  PubMed  CAS  Google Scholar 

  17. Van der Werf T. Coronary arteriography. In T van der Werf, editor, Cardiovascular Pathophysiology, pages 276–286. Oxford University Press, Oxford, 1980.

    Google Scholar 

  18. Vlodaver Z, Frech R, Van Tassel R A, and Edwards J E. Correlation of the antemortem coronary arteriogram and the postmortem specimen. Circulation, 47:162–168, 1973.

    PubMed  CAS  Google Scholar 

  19. Pijls N H J. Meting van de doorbloeding van het myocard. Cardioselecta, 7:1–16, 1989.

    Google Scholar 

  20. Fung Y C. Blood flow in arteries. In Y C Fung, editor, Biodynamics, part II, Circulation, pages 77–165. Springer, New York, 1984.

    Google Scholar 

  21. Kirkeeide R L, Gould K L, and Parsel L. Assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodila-tion. VIII. Validation of coronary flow reserve as a single integrated functional measure of stenosis severity reflecting all its geometric dimensions. J Am Coll Cardiol,7:103–113, 1986.

    Article  PubMed  CAS  Google Scholar 

  22. Gould K L, Kirkeeide R L, and Buchi M. Coronary flow reserve as a physiologic measure of stenosis severity. J Am Coll Cardiol, 15:459–474, 1990.

    Article  PubMed  CAS  Google Scholar 

  23. Gould K L, Lipscomb K, and Hamilton G W. Physiologic basis for assessing critical coronary stenosis: instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol, 33:87–94, 1974.

    Article  PubMed  CAS  Google Scholar 

  24. Folts J D, Gallagher K, and Rowe G G. Hemodynamic effects of controlled degrees of coronary artery stenosis in short-term and long-term studies in dogs. J Thorac Cardiov Surg,73:722–727, 1977.

    PubMed  CAS  Google Scholar 

  25. Young D F, Cholvin N R, and Roth A C. Flow in the major branches of the left coronary artery during experimental coronary insufficiency in the unanesthetized dog. Circ Res,36:735–743, 1975.

    PubMed  CAS  Google Scholar 

  26. Marcus M L. Basic regulatory mechanisms in the coronary circulation. In M L Marcus, editor, The coronary circulation in health and disease, pages 93–112. McGraw-Hill, New York, 1983.

    Google Scholar 

  27. Gerber K H and Higgins C B. Comparative effects of ionic and nonionic contrast materials on coronary and peripheral blood flow. Invest Radiol, 17:292–298, 1982.

    PubMed  CAS  Google Scholar 

  28. Schraeder R, Baller D, Hoeft A, Korb H, Wolpers H G, and Heilige G. Reduced side effects of low osmolality nonionic contrast media in coronary arteriography. In V Taenzer and E Zeitler, editors, Contrast media in urography, angiography and computerized tomography, pages 67–77. George Thieme Verlag, Stutgart, New York, 1983.

    Google Scholar 

  29. Simon R, Koch M, Hermann G, Amende I, and Lichtlen P R. Direct effects of an ionic nonionic contrast agent on the coronary circulation in man. In Proceedings Xth World Congress Cardiology, page 294. Washington, 1986.

    Google Scholar 

  30. Wilson R F, Laughlin D E, Ackell P H, Chilian W M, Holida M D, Hartley C J, Armstrong M L, Marcus M L, and White C W. Transluminal subselective measurement of coronary artery blood flow velocity and vasodilator reserve in man. Circulation,72:82–92, 1985.

    Article  PubMed  CAS  Google Scholar 

  31. Pijls N H J, Bos H S, Uijen G J H, and Van der Werf T. Is ionic isotonic iohexol the contrast agent of choice for quantitative myocardial videodensitometry? Intern J Cardiac Imag,3:117–126, 1988.

    Article  CAS  Google Scholar 

  32. Pijls N H J, Uijen G J H, Hoevelaken A, Pijnenburg T, Van Leeuwen K, Fast J H, Bos J S, Aengevaeren W R M, and Van der Werf T. Mean transit time for videodensitometric assessment of myocardial perfusion and the concept of maximal flow ratio: A validation study in the intact dog and a pilot study in man. Int J Cardiac Imag, 5:191–202, 1990.

    Article  CAS  Google Scholar 

  33. O’Neill W W, Walton J A, Bates E R, Colfer H T, Aueron F M, LeFree M T, Pitt B, and Vogel R A. Criteria for successful coronary angioplasty as assessed by alterations in coronary vasodilatory reserve. J Am Coll Cardiol, 3:1382–1390, 1984.

    Article  PubMed  Google Scholar 

  34. Zijlstra F, Den Boer A, Reiber J H C, Van Es G A, Lubsen J, and Serruys P W. Assessment of immediate and long-term results of percutaneous transluminal coronary angioplasty. Circulation,78:15–24, 1988.

    Article  PubMed  CAS  Google Scholar 

  35. Pijls N H J, Uijen G J H, Hoevelaken A, Arts T, Aengevaeren W R M, Bos H S, Fast J H, Van Leeuwen K L, and Van der Werf T. Mean transit time for the assessment of myocardial perfusion by videodensitometry. Circulation, 81:1331–1340, 1990.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Kluwer Academic Publishers

About this chapter

Cite this chapter

Pijls, N.H.J. (1991). Introduction. In: Maximal Myocardial Perfusion as a Measure of the Functional Significance of Coronary Artery Disease. Developments in Cardiovascular Medicine, vol 127. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3498-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3498-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-1430-1

  • Online ISBN: 978-94-011-3498-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics