Skip to main content

Microcalorimetric Study of the Growth of Azospirillum Brasilense: Relation Between Heat Production and other Growth Parameters

  • Chapter
  • 23 Accesses

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 48))

Abstract

We have grown Azospirillum brasilense sp. on a synthetic medium with either 5.0, 2.5 or 0.5 g malic acid/1 to study the relation between heat output and other growth parameters. Most Pearson correlation coefficients between heat production, bacterial counts, CO2 production, L-malic acid and NH4 + consumption were significant at the five percent level. Yield factors for cell dry weight production from total energy consumed (metabolized malic acid * heat of combustion of malic acid) were 42.26 μg/J in medium with 5.0 g malic acid/1, 27.97 μq/J in medium with 2.5 and 26.90 μ/J in medium with 0.5 g malic acid/1. Growth on 5.0 g malic acid/1 resulted in the loss of 358.6 kJ/mole from the culture per mole of malic acid metabolized; on 2.5 g/1, this loss was 444.8 kJ/mole and on 0.5 g/1, 498.8 kJ/mole were lost per mole of malic acid metabolized. The energy efficiency was highest at the higher malic acid concentrations, ranging from 74% with 5.0 g/1, over 65% with 2.5 g/1 to 62% with 0.5 g malic acid/1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J.P.E, and K. Domsch. 1975. Measurements of bacterial and fungal contributions to respiration of selected agricultural and forest soils. Can. J. Hicrobiol. 21: 314–322.

    Article  CAS  Google Scholar 

  • Belaich, J.P., J.C. Senez and H. Hurgier. 1968. Microcalorimetric study of glucose permeation in microbial cells. J. Bacteriol. 95: 1750–1757.

    PubMed  CAS  Google Scholar 

  • Belaich, À. and J.P. Belaich. 1976. Microcalorimetric study of the anaerobic growth of Escherichia coli: Measurements of the affinity of whole cells for various energy substrates. J. Bacteriol. 125: 19–24.

    PubMed  CAS  Google Scholar 

  • Belaich, J.P. 1980. Growth and metabolism in bacteria. In: Biological Microcalorimetry, pp. 1–42. Edited by Beezer, A.E. New York. Academic Press.

    Google Scholar 

  • Dermoun, Z. and J.P. Belaich. 1979. Microcalorimetric study of Escherichia coli aerobic growth: Kinetic and experimental enthalpy associated with growth on succinic acid. J. Bacteriol. 140: 377–380.

    PubMed  CAS  Google Scholar 

  • Dermoun, Z. and J.P. Belaich. 1980. Microcalorimetric study of Escherichia coli aerobic growth: Theoretical aspects of growth on succinic acid. J. Bacteriol. 143: 742–746.

    PubMed  CAS  Google Scholar 

  • Itoh, S. and K. Takahashi. 1984. Calorimetric studies of microbial growth: Kinetic analysis of growth thermograms observed for bakery yeast at various temperatures. Agric. Biolog. Chem. 47: 1281–1288.

    Google Scholar 

  • Kimura, J. and K. Takahashi. 1985. Calorimetric studies of soil microbes: Quantitative relation between heat evolution during microbial degradation of glucose and changes in microbial activity in soil. J. Gen. Bacteriol. 131: 3083–3089.

    CAS  Google Scholar 

  • Ljungholm, K., B. Norén, R. Skold and I. Wadsö. 1979. Use of microcalorimetry for the characterization of microbial activity in soil. Oikos. 33: 15–23.

    Article  Google Scholar 

  • Monk, P. and I. Wadsö. 1975. The use of microcalorimetry for bacterial classification. J. Appl. Bacteriol, 38: 71–74.

    Article  PubMed  CAS  Google Scholar 

  • Monk, P. and I. Wadsö. 1968. À flow micro reaction calorimeter. Acta Chem. Scand. 22: 1842–1852.

    Article  CAS  Google Scholar 

  • Honk, P. and I. Wadsö. 1969. Flow microcalorimetry as an analytical tool in biochemistry and related areas. Acta Chem. Scand. 23: 29–36.

    Article  Google Scholar 

  • Hortensen, U., B. Norén and I. Wadsö. 1973. Hicrocalorimetry in the study of the activity of microorganisms. Bull. Ecol. Res. Comm. ( Stockholm ), 17: 189–197

    Google Scholar 

  • Payne, W.V. 1970. Energy yields and growth of heterotrophs. Ann. Rev. Hicrobiol. 24: 17–52.

    Article  CAS  Google Scholar 

  • Sparling, G.P. 1981. Hicrocalorimetry and other methods to assess biomass and activity in soil. Soil Biol. Biochem. 13: 93–98.

    Article  CAS  Google Scholar 

  • Westerhoff H. V., K. J. Hellingwerf and K. Van Dam. 1983. Thermodynamic efficiency of microbial growth is low but optimal for maximal growth rate. Proc. Natl. Acad. Sci. 80: 305–309.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vandenhove, H., Merckx, R., Vlassak, K. (1991). Microcalorimetric Study of the Growth of Azospirillum Brasilense: Relation Between Heat Production and other Growth Parameters. In: Polsinelli, M., Materassi, R., Vincenzini, M. (eds) Nitrogen Fixation. Developments in Plant and Soil Sciences, vol 48. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3486-6_44

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3486-6_44

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5541-3

  • Online ISBN: 978-94-011-3486-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics