Skip to main content

Part of the book series: Mathematics and Its Applications ((MAIA,volume 67))

Abstract

In this paper the concept of density weighting function (d.w.f.) [6] is reexamined and a new constructive approach to the generation of dependence between random variables based on this concept is proposed. A number of well known classical distributions (including the generalized Farlie-Gumbel-Morgenstern distribution) are reinterpreted and new reparametrizations are introduced. Limits of dependence explained by d.w.f.s are examined. An elementary Lemma (stated here for the case n = 2) which serves as a key for a number of far reaching generalizations can be formulated as follows:

Let h(x,y) be a p.d.f. on the square [0, l]2, symmetric about the line y = x. If the isoprobability contours of h are of the form x-y = k(k ∈ [-1, 1]), and h(x, y) is a strictly monotone function ofx-y∣, then marginal densities cannot be uniform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, T.W., An Introduction to Multivariate Statistical Analysis, John Wiley and Sons, Inc., New York, 1958.

    MATH  Google Scholar 

  2. Dall’Aglio, G., “Les Fonctions Extrêmes de la Classes de Fréchet à Trois Dimensions,” Publ. Inst. Stat. Univ. Paris, 9, pp. 175–188, 1960.

    MathSciNet  Google Scholar 

  3. Dall’Aglio, G., “Fréchet Classes and Compatibility of Distribution Functions” Symp. Math, 9, pp. 131–150, 1972.

    MathSciNet  Google Scholar 

  4. Dykstra, R.L., J.E. Hewett, and W.A. Thompson, “Events Which Are Almost Independent,” Ann. Stats., 1, pp. 674–681, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  5. Farlie, D.J.G., “The Performance of Some Correlation Coefficients for a General Bivariate Distribution,” Biometrika, 47, pp. 307–323, 1960.

    MathSciNet  MATH  Google Scholar 

  6. Fréchet, M., “Sur les Tableaux de Corrélation dont les Marges sont Données,” Ann. Univ. Lyon, Sect. A, 14, pp. 53–77, 1951.

    Google Scholar 

  7. Genest, C., “Frank’s Family of Bivariate Distributions,” Biometrika, 74, pp. 549–555, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  8. Gumbel, E.J., “Distributions à Plusieurs Variables dont les Marges sont Données,“ (with remarks by M. Fréchet), Comptes Rendus de l’Académie des Sciences, 246, pp. 2717–2720, Paris, 1960.

    MathSciNet  Google Scholar 

  9. Gumbel, E.J., “Bivariate Exponential Distributions,” JASA, 5, pp. 698–707, 1960.

    MathSciNet  Google Scholar 

  10. Hoeffding, W., “Masstabinvariante Korrelationstheorie,” Schriften des mathematischen Instituts und des Instituts für Angewandte Mathematik der Universität Berlin, 5, pp. 179–233, 1940.

    Google Scholar 

  11. Johnson, N.L. and S. Kotz, Distributions in Statistics: Continuous Multivariate Distributions, John Wiley and Sons, Inc., New York, 1972.

    MATH  Google Scholar 

  12. Johnson, N.L. and S. Kotz, “On Some Generalized Farlie-Gumbel-Morgenstern Distributions,” Comm. Stat., 4, pp. 415–427, 1975.

    MathSciNet  MATH  Google Scholar 

  13. Johnson, N.L. and S. Kotz, “On Some Generalized Farlie-Gumbel-Morgenstern Distributions II: Regression, Correlation, and Further Generaliztions,” Comm. Stat. Theor. Meth., A6(6), pp. 485–496, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  14. Kemp, J.F., Jr., “Advanced Problem #5894,” Am. Math Monthly, 80, p. 83, 1973.

    MathSciNet  Google Scholar 

  15. Kemp, J.F., Jr., “Solution to Advanced Problem #5894 by C.R. Blyth, B.C. Arnold, et. al.” Am. Math. Monthly, 81, p. 413, 1974.

    Article  MathSciNet  Google Scholar 

  16. Kemp, J.F., Jr., “Advanced Problem #6115,” Am. Math. Monthly, 83, p. 748, 1976.

    MathSciNet  Google Scholar 

  17. Kimeldorf, G. and A. Sampson, “One-parameter Families of Bivariate Distributions with Fixed Marginals,” Comm. Stat., 4, pp. 293–301, 1975.

    MathSciNet  MATH  Google Scholar 

  18. Kimeldorf, G. and A. Sampson, “Uniform Representations of Bivariate Distributions,” Comm. Stat., 4, pp. 617–627, 1975.

    MathSciNet  MATH  Google Scholar 

  19. Kotz, S. and N.L. Johnson, “Dependence Properties of Iterated Generalized FGM Distributions,” Comptes Rendus de l’Académie des Sciences, Sect. A, 285, pp. 277–280, Paris, 1977.

    MathSciNet  MATH  Google Scholar 

  20. Kotz, S., “Dependence Concepts and their Application in Probabilistic Modelling,” Proc. 34th Annual Conference of American Society for Quality Control, pp. 245–251, Atlanta, Georgia, 1980.

    Google Scholar 

  21. Lehmann, E.L., “Some Concepts of Dependence,” Ann. Math. Stat., 37, pp. 1137–1153, 1966.

    Article  MATH  Google Scholar 

  22. Mardia, K.V., Families of Bivariate Distributions, Hafner Publishing Co., Darien, Connecticut, 1970.

    MATH  Google Scholar 

  23. Morgenstern, D., “Einfache Beispiele Zweidimensionaler Verteilungen,” Mitteilungsblatt für mathematische Statistik, pp. 234–235, 1956.

    Google Scholar 

  24. Nataf, A., “Détermination des Distributions de Probabilitiés dont les Marges sont Données,“ Comptes Rendus de l’Académie des Sciences, 255, pp. 42–43, Paris, 1962.

    MathSciNet  MATH  Google Scholar 

  25. Plackett, F.L., “A Class of Bivariate Distributions,” JASA, 60, pp. 516–522, 1965.

    Article  MathSciNet  Google Scholar 

  26. Rankin, R.A., An Introduction to Mathematical Analysis,, McMillan, New York, p. 224, 1963.

    MATH  Google Scholar 

  27. Tchen, A., “Inequalities for Distributions with Given Marginals,” Ann. Prob, 8, pp. 814–827, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  28. Whitt, W., “Bivariate Distributions with Given Marginals,” Ann. Stats., 4, pp. 1280–1289, 1976.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kotz, S., Seeger, J.P. (1991). A New Approach to Dependence in Multivariate Distributions. In: Dall’Aglio, G., Kotz, S., Salinetti, G. (eds) Advances in Probability Distributions with Given Marginals. Mathematics and Its Applications, vol 67. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3466-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3466-8_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5534-5

  • Online ISBN: 978-94-011-3466-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics