Skip to main content

Combinatorial Algorithms for the Expansion of Various Products of Schur Functions

  • Chapter
Topics in Computational Algebra
  • 173 Accesses

Abstract

The main purpose of these lectures is first to briefly survey the fundamental connection between the representation theory of the symmetric group S n and the theory of symmetric functions and second to show how combinatorial methods that arise naturally in the theory of symmetric functions lead to efficient algorithms to express various products of representations of S n in terms of sums of irreducible representations. That is, there is a basic isometry which maps the center of the group algebra of S n , Z(S n ), to the space of homogeneous symmetric functions of degree n, Λn. This basic isometry is known as the Frobenius map, F. The Frobenius map allows us to reduce calculations involving characters of the symmetric group to calculations involving Schur functions. Now there is a very rich and beautiful theory of the combinatorics of symmetric functions that has been developed in recent years. The combinatorics of symmetric functions, then leads to a number of very efficient algorithms for expanding various products of Schur functions into a sum of Schur functions. Such expansions of products of Schur functions correspond via the Frobenius map to decomposing various products of irreducible representations of S n into their irreducible components. In addition, the Schur functions are also the characters of the irreducible polynomial representations of the general linear group over the complex numbers GL n (ℂ) Thus the combinatorial algorithms for the expansions of Schur functions also have applications for decomposing various representations of GL n (ℂ) into their irreducible components.

Partially supported by NSF Grant #DMS 87-02473

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

  1. Butler, P. H., and King, R. C, “Branching rules for U(N) <Inline>1</Inline> U(M) and the evaluation of outer plethysms”, J. Math. Phys. 14 (1973), 741–745.

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen. Y.M., “Combinatorial Algorithms for Plethysm”, Doctoral thesis, UCSD (1982).

    Google Scholar 

  3. Chen, Y. M., Garsia, A., and Remmel, J. B., “Algorithms for plethysm”, Contemporary Math., 34 (1984), 109–153.

    Article  MathSciNet  Google Scholar 

  4. Duncan, D. G., “Note on a formula by Todd”, J. London Math. Soc. 27 (1952a), 235–236.

    Article  MathSciNet  MATH  Google Scholar 

  5. Duncan, D. G., “On D. E. Littlewood’s algebra of 5-functions”, Can. J. Math. 4 (1952b), 504–512.

    Article  MATH  Google Scholar 

  6. Duncan, D. G., “Note on the algebra of S-functions”, Can. J. Math. 6 (1954), 509–510.

    Article  MATH  Google Scholar 

  7. Egecioglu, O., “Computation of outer products of Schur functions”, Computer Physics Comm. 28 (1982), 183–187.

    Article  Google Scholar 

  8. Egecioglu, O., and Remmel, J., “Symmetric and Antisymmetric Plethysms”, Atomic Data and Nuclear Data Tables, 32 (1985), 157–196.

    Article  Google Scholar 

  9. Foulkes, H. O., “Concomitants of the quintic and sextic up to degree four in coefficients of the ground form”, J. London Math. Soc. 25 (1950), 205–209.

    Article  MathSciNet  MATH  Google Scholar 

  10. Foulkes, H. O., “The new multiplication of S-functions”, J. London Math. Soc. 26 (1951), 132–139.

    Article  MathSciNet  MATH  Google Scholar 

  11. Foulkes, H. O., “Plethysm of S-functions”, Philos. Trans. Roy. Soc. London Ser. A 246 (1954), 555–591.

    Article  MathSciNet  MATH  Google Scholar 

  12. Garsia, A. M. and Remmel, J. B., “Shuffles of permutations and the Kronecker product”, Graphs and Combinatorics 1 (1985), 217–263.

    Article  MathSciNet  MATH  Google Scholar 

  13. Garsia, A. M. and Remmel, J. B., “Symmetric functions and raising operators”, Linear and Multilinear Algebra 10 (1981), 15–43.

    Article  MathSciNet  MATH  Google Scholar 

  14. Howe, R., ((GL)n, (GL)m)-duality and Symmetric Plethysm, preprint.

    Google Scholar 

  15. James, G. D., The representation theory of the symmetric groups, Lecture Notes in Math. 682, Springer-Verlag, New York, York, 1978.

    Google Scholar 

  16. James, G. D., and Kerber, A., “The Representation Theory of the Symmetric Group”, Encyc. of Math, and its Appl., Add. Wes. 1981.

    Google Scholar 

  17. Littlewood, D. E., “The Theory of Group Characters and Matrix Representations of Groups”, Oxford University Press, 1940.

    Google Scholar 

  18. Littlewood, D. E., “Invariant theory, tensors and group characters”, Philos. Trans. Roy. Soc. London Ser. A, 239 (1944), 305–365.

    Article  MathSciNet  MATH  Google Scholar 

  19. Littlewood, D. E., “Modular representations of symmetric groups”, Proc. Roy Soc. London Ser. A, 209 (1951), 333–353.

    Article  MathSciNet  MATH  Google Scholar 

  20. Littlewood, D. E., “The characters and representations of imprimitive groups”, Proc. London Math. Soc. (3) 6 (1956), 251–266.

    Article  MathSciNet  MATH  Google Scholar 

  21. Littlewood, D. E., “The Kronecker product of symmetric group representations”, J. London Math. Soc., (1) 31 (1956), 89–93.

    Article  MathSciNet  MATH  Google Scholar 

  22. Macdonald, I. G., “Symmetric Functions and Hall Polynomials”, Oxford Math. Monographs 1979.

    MATH  Google Scholar 

  23. Murnaghan, F. D., “The analysis of representations of the linear group”, Anais Acad. Brasil Ci. 23 (1951), 1–19.

    MathSciNet  MATH  Google Scholar 

  24. Murnaghan, F. D., “On the representations of the symmetric group”, Amer. Journal of Math., 59 (1937), 437–488.

    Article  MathSciNet  Google Scholar 

  25. Murnaghan, F. D., “The characters of the symmetric group”, Anais Acad. Brasil Ci, 23 (1951), 141–154.

    MathSciNet  MATH  Google Scholar 

  26. Murnaghan, F. D., “A generalization of Hermite’s law of reciprocity”, Anais Acad. Brasil Ci. 23 (1951), 347–368.

    MathSciNet  MATH  Google Scholar 

  27. Remmel, J. B., “A formula for the Kronecker products of Schur functions of hook shapes”, J. Algebra 120 (1989), 100–118.

    Article  MathSciNet  MATH  Google Scholar 

  28. Remmel, J. B., “Computing cocharacters of sign trace identities”, Linear and Multilinear Algebra 23 (1988), 1–14.

    Article  MathSciNet  MATH  Google Scholar 

  29. Remmel, J. B., “On Kronecker products of Schur functions of two row shapes”, in preparation.

    Google Scholar 

  30. Remmel, J. B. and Whitney, R., “Multiplying Schur functions”, J. of Algorithms 5 (1984), 471–487.

    Article  MathSciNet  MATH  Google Scholar 

  31. Robinson, G. de B., “On the representations of the symmetric group III”, Amer. J. Math. 70 (1948), 277–294.

    Article  MathSciNet  MATH  Google Scholar 

  32. Robinson, G. de B., “Induced representations and invariants”, Canad. J. Math. 2 (1950), 334–343.

    Article  MATH  Google Scholar 

  33. Thrall, R. M., “On symmetrized Kronecker powers and the structure of the free Lie ring”, Amer. J. Math. 64 (1942a), 371–388.

    Article  MathSciNet  MATH  Google Scholar 

  34. Thrall, R. M. and Robinson, G. de B., “Supplement to a paper by G. de B. Robinson”, Amer. J. Math. 73 (1951), 721–724.

    Article  MathSciNet  MATH  Google Scholar 

  35. Todd, J. A., “A note on the algebra of S-functions”, Proc. Cambridge Philos. Soc. 45 (1949), 328–334.

    Article  MathSciNet  MATH  Google Scholar 

  36. Todd, J. A., “Note on a paper by Robinson”, Canad. J. Math. 2 (1950), 331–333.

    Article  MathSciNet  MATH  Google Scholar 

  37. Wybourne, B. G., Symmetry Principles in Atomic Spectroscopy, Wiley, New York, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Remmel, J.B. (1990). Combinatorial Algorithms for the Expansion of Various Products of Schur Functions. In: Cattaneo, G.M.P., Strickland, E. (eds) Topics in Computational Algebra. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3424-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3424-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5514-7

  • Online ISBN: 978-94-011-3424-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics