Skip to main content

Statistics in Ecosystem Survey: Computer Support for Process-Based Sample Stability Tests and Entropy/Information Inference

  • Chapter
  • 188 Accesses

Part of the book series: Handbook of vegetation science ((HAVS,volume 11))

Abstract

M.E.D. Poore’s classical idea of successive approximation is revisited in the context of ecosystem survey, process sampling, sample structure stability tests, and inference by E.C. Pielou’s averaging method in the expanding sample. Application programs are offered to support the otherwise heavy computational task.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected bibliography

  • Abramson, N. 1963. Information Theory and Coding. McGraw-Hill, New York.

    Google Scholar 

  • Brillouin, L. 1962. Science and Information Theory. Academic Press, New York.

    Google Scholar 

  • Edgington E.S. 1987. Randomization Tests. 2nd ed. Marcel Dekker, New York.

    Google Scholar 

  • Feoli, E., M. Lagonegro and L. Orlóci. 1984. Information Analysis of Vegetation Data. Dr. W. Junk, bv., The Hague.

    Book  Google Scholar 

  • Goodall, D.W. 1966. A new similarity index based on probability. Biometrics 22: 883–907.

    Article  Google Scholar 

  • Goodall, D.W., P. Ganis and E. Feoli. 1987. Probabilistic methods in classification: a manual for seven computer programs. Universita degli Studi di Trieste GEAD EQ n 7; 1987.

    Google Scholar 

  • Greig-Smith, P. 1980. The development of numerical classification and ordination. Vegetatio 42: 1–9.

    Article  Google Scholar 

  • Greig-Smith, P. 1983. Quantitative Plant Ecology. 3rd ed. Blackwell, Oxford.

    Google Scholar 

  • Groenewoud, H. van. 1965. Ordination and classification of Swiss and Canadian forests by various biometrie and other methods. Ber. Geobot. Inst. ETH Stiftg. Rübel, Zürich 36: 28–102.

    Google Scholar 

  • Hill, O.H. 1973. Diversity and evenness: a unifying notion and its consequences. Ecology 54: 427–432.

    Article  Google Scholar 

  • Ihm, P. and H. van Groenewoud. 1975. A multivariate ordering of vegetation data based on Gaussian type response curves. J. Ecol. 63: 767–777.

    Article  Google Scholar 

  • Juhász-Nagy, P. and J. Podani. 1983. Information theory methods for the study of spatial processes and succession. Vegetatio 51: 129–140.

    Article  Google Scholar 

  • Kenkel, N.C. 1984. Boreal Vegetation of a Lacustrine Surface Sand Belt, Elk Lake, Ontario: Types and Environmental gradients. Ph.D. Thesis. University of Western Ontario, London, Ontario, Canada.

    Google Scholar 

  • Kenkel, N.C., P. Juhász-Nagy and J. Podani. 1989. On sampling procedures in population and community ecology. Vegetatio 83: 195–207.

    Article  Google Scholar 

  • Kullback, S. 1968. Information Theory and Statistics. Dover Publications, New York.

    Google Scholar 

  • Margalef, D.R. 1958. Information theory in ecology. Yearbook of the Society for General Systems Research 3: 36–71.

    Google Scholar 

  • Orlóci, L. 1969. Information analysis of structure in biological collections. Nature 223: 483–484.

    Article  Google Scholar 

  • Orlóci, L. 1978. Multivariate Analysis in Vegetation Research. 2nd ed. Dr. W. Junk, The Hague.

    Google Scholar 

  • Orlóci, L. 1980. Non-linear data structures and their description. In: L. Orlóci, C.R. Rao and W.M. Stiteler (eds.), Multivariate Methods in Ecological Work, pp. 191–202, Statistical Ecology Series, Vol. 7, Pennsylvania State University Press, University Park, Pennsylvania.

    Google Scholar 

  • Orlóci, L. 1988. Community organization: recent advances in numerical methods. Can. J. Bot. 66: 2626–2633.

    Article  Google Scholar 

  • Orlóci, L. and W. Stanek. 1980. Vegetation survey of the Alaska Highway, Yukon territory: types and gradients. Vegetatio 41: 1–56.

    Article  Google Scholar 

  • Orlóci, L. and M. Orlóci. 1985. Comparison of Communities without the use of species: model and example. Ann. Bot. (Roma) 43: 275–285.

    Google Scholar 

  • Orlóci, L. and V. De Patta Pillar. 1990. Ecosystem surveys: When to stop sampling. Proceedings of the 1989 International Conference and Workshop on Global Monitoring and Assessment: Preparing for the 21st Century, Venice. Fondacione G. Gini, Rome.

    Google Scholar 

  • Pielou, E.C. 1966. Shannon’s formula as a measure of species diversity: its use and misuse. Amer. Natur. 100: 463–465.

    Article  Google Scholar 

  • Pielou, E.C. 1977. Mathematical Ecology. 2nd ed. Wiley, New York.

    Google Scholar 

  • Podani, J. 1984. Spatial processes in the analysis of vegetation: theory and review. Acta Botanica Hungarica 30: 75–118.

    Google Scholar 

  • Podani, J. 1987. Computerized sampling in vegetation studies. Coenoses 2: 9–18.

    Google Scholar 

  • Poore, M.E.D. 1955. The use of phytosociological methods in ecological investigations. II. Practical issues involved in an attempt to apply the Braun-Blanquet system. J. Ecol. 43: 226-244.

    Article  Google Scholar 

  • Poore, M.E.D. 1956. The use of phytosociological methods in ecological investigations. III. Practical applications. J. Ecol. 40: 28–50.

    Article  Google Scholar 

  • Rényi, A. 1961. On measures of entropy and information. In: J. Neyman (ed.), Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, pp. 547–561. University of California Press, Berkeley,

    Google Scholar 

  • Sampford, M.R. 1962. An Introduction to Sampling Theory. Oliver & Boyd, Edinburgh.

    Google Scholar 

  • Shannon, C.E. 1948. A mathematical theory of communication. Bell System Tech. J. 27: 379–423.

    Google Scholar 

  • Shepard, R.N. and Carroll, J.D. 1966. Parametric representation of nonlinear data structures. In: P.R. Krisnaiah (ed.), Multivariate Analysis, pp. 561–592. Academic Press, London.

    Google Scholar 

  • Whittaker, R.H. 1967. Gradient analysis of vegetation. Biol. Rev. 42: 207–264.

    Article  PubMed  CAS  Google Scholar 

  • Whittaker, R.H. 1975. Communities and Ecosystems. MacMillan, New York.

    Google Scholar 

  • Wildi, O. and L. Orlóci. 1987. Flexible gradient analysis: a note on ideas and an example. Coenoses 2: 61–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. Feoli L. Orlóci

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Orlóci, L. (1991). Statistics in Ecosystem Survey: Computer Support for Process-Based Sample Stability Tests and Entropy/Information Inference. In: Feoli, E., Orlóci, L. (eds) Computer assisted vegetation analysis. Handbook of vegetation science, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3418-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3418-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5512-3

  • Online ISBN: 978-94-011-3418-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics