Chemical Evolution of Galaxies

  • B. E. J. Pagel
Conference paper
Part of the Astrophysics and Space Science Library book series (ASSL, volume 169)


Initial conditions are probably set by results of Big Bang nucleosynthesis (BBNS) without intervening com­plications affecting the composition of visible matter so that extrapolation of observed abundances to BBNS products seems fairly secure. Primordial helium and deuterium abundances deduced in this way place upper and lower limits on baryonic density implying that both baryonic and non-baryonic dark matter exist and predicting no more than 3 neutrino flavours as recently confirmed in accelerator experiments. The validity of simple galactic chemical evolution models assumed in extrapolating back to the Big Bang is examined in the light of the frequency distribution of iron or oxygen abundances in the Galactic halo, bulge and disk.


Dark Matter Chemical Evolution Globular Cluster Star Formation Rate Galactic Halo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abia C and Rebolo R (1989) “Oxygen abundances in unevolved metal-poor stars: interpretation and consequences” Astrophys J, 347, 186–194ADSCrossRefGoogle Scholar
  2. Axon D J, Stavely-Smith L, Fosbury R A E, Danziger J, Boksenberg A and Davies R D (1988) “Spectrophotometric and neutral hydrogen observations of Michigan 160” Mon Not R Astr Soc, 281, 1077–1090ADSGoogle Scholar
  3. Barry D C (1988) “The chromosperic age dependence of the birthrate, composition, motions and rotation of late F and G dwarfs within 25 parsecs of the Sun” Astrophys J, 334, 436–448ADSCrossRefGoogle Scholar
  4. Boesgaard A and Steigman G (1985) “Big Bang nucleosynthesis: theories and observations” Ann Rev Astr Astrophys, 23, 319–378ADSCrossRefGoogle Scholar
  5. Briggs F H, Wolfe A M, Liszt H M, Davis M M and Turner K L (1989) “The spatial extent of the z = 2.04 absorber in the spectrum of PKS 0458–020” Astrophys J, 341, 650–657ADSCrossRefGoogle Scholar
  6. Byrne J et al (1990) “Measurement of the neutron lifetime by counting trapped protons” Phys Rev Let 65, 289–292ADSCrossRefGoogle Scholar
  7. Clayton D D (1985) “Galactic chemical evolution and nucleocosmochronology: a standard model” in W D Amen and J W Truran (eds) Nucleosynthesis: Challenges and New Developments Univ of Chicago Press, 65–88Google Scholar
  8. Edmunds M G and Pagel B E J (1984) “On the composition of H II regions in southern galaxies-III. NCG 2997 and 7793” Mon Not R Astr Soc, 211, 507–519ADSGoogle Scholar
  9. Eggen O J, Lynden-Bell D and Sandage A R (1962) “Evidence from the motions of old stars that the Galaxy has collapsed” Astrophys J, 136, 748–766ADSCrossRefGoogle Scholar
  10. Ellis J, Salati P and Shaver P (eds) (1990) Proceedings of the ESO-CERN Topical Workshop on LEP and the Universe, Geneva: CERN-TH 5709 /90Google Scholar
  11. Frogel J A (1988), “The Galactic nuclear bulge and the stellar content of spheroidal systems” Ann Rev Astr Astrophys 26, 51–92ADSCrossRefGoogle Scholar
  12. Geisler D and Friel E D (1990) “Abundance distribution of Baade’s window giants’” ESO/CTIO Workshop: Bulges of Galaxies, B J Jarvis & D M Temdrup (eds), Garching: ESO Conference and Workshop Proceedings no 35, 77–82Google Scholar
  13. Gilmore G and Wyse R F G (1986), “The Chemical Evolution of the Galaxy” Nature, London, 322, 806–807ADSCrossRefGoogle Scholar
  14. Gilmore G, Wyse R F G and Kuijken K (1989), “Kinematics, Chemistry and Structure of the Galaxy”, Ann Rev Astr Astrophys, 27, 555–627ADSCrossRefGoogle Scholar
  15. Grenon M (1989), “The chemical evolution of the Galactic disk from the kinematics and metallicities of proper motion stars” Astrophys Sp Sci, 156, 29–37ADSCrossRefGoogle Scholar
  16. Grenon M (1990) “From halo to SMR stars” in ESO/CTIO Workshop: Bulges of Galaxies, B J Jarvis & D M Temdrup (eds), Garching: ESO Conference and Workshop Proceedings no 35, 143–152Google Scholar
  17. Guiderdoni B and Rocca-Volmerange B (1990), “Constraints on the evolution of high red-shift galaxies and on q0 from faint galaxy counts” Astr Astrophys, 227, 362–378ADSGoogle Scholar
  18. Hartwick F D A (1976), “The chemical evolution of the Galactic halo” Astrophys J 209, 418–423ADSCrossRefGoogle Scholar
  19. Köppen J and Arimoto N (1990) “A “standard” sequence of chemical evolution models for disk galaxies” in F Ferrini, J Franco and F Matteucci (eds) Chemical and Dynamical Evolution of Galaxies Pisa, Giardini Editore, in pressGoogle Scholar
  20. Kurko-Suonio H, Matzner R A, Olive K A and Schramm D N (1990) “Big Bang nucleosynthesis and the quark-hadron transition” Astrophys J, 353, 406–410Google Scholar
  21. Larson R B (1974) “Effects of supernovae on the early evolution of galaxies” Mon Not R Astr Soc 169, 229–245ADSGoogle Scholar
  22. Larson R B (1976) “Models for the formation of disc galaxies” Mon Not R Astr Soc 176, 31–52ADSGoogle Scholar
  23. Larson R B (1990) “Galaxy building” Pub Astr Soc Pacific, 102 709–722ADSCrossRefGoogle Scholar
  24. Lewis J R and Freeman K C (1989) “Kinematics and chemical properties of the old disk of the Galaxy” Astr J, 97, 139–162ADSCrossRefGoogle Scholar
  25. Lynden-Bell D (1975) “The chemical evolution of galaxies” Vistas in Astr 19, 299–316ADSCrossRefGoogle Scholar
  26. Mampe W et al (1989) “Neutron lifetime measured with stored ultracold neutrons” Phys Rev Lett, 63, 593–596ADSCrossRefGoogle Scholar
  27. Matteucci F and Brocato E (1990) “Metallicity distribution and abundance ratios in the stars of the Galactic bulge” submitted to Astrophy J Lett, Google Scholar
  28. Matteucci F and Greggio L (1986) “Relative roles of type I and II supernovae in the chemical enrichment of the interstellar gas” Astr Astrophys, 154, 279–287ADSGoogle Scholar
  29. McCall M L (1982) Thesis University of Texas, AustinGoogle Scholar
  30. Nissen P E, Edvardsson B and Gustafsson B (1985) “Oxygen and a-element abundances in Galactic disk stars as a function of age” in I J Danziger, F Matteucci and K Kjär (eds), Production and distribution of the C, N, O elements ESO, Garching, 131–149Google Scholar
  31. Ostriker J B and Thuan T X (1975) “Galactic evolution II. Disk galaxies with massive halos” Astrophys J, 202,353–364ADSCrossRefGoogle Scholar
  32. Pagel B E J (1989a) “The G-dwarf problem and radio-active cosmochronology” in J E Beckman and B E J Pagel (eds), Evolutionary Phenomena in Galaxies, Cambridge University Press, 201–223Google Scholar
  33. Pagel B E J (1989b) “An analytical model for the evolution of primary elements in the Galaxy” Rev Mex Astr Astrofis, 18, 161–172ADSGoogle Scholar
  34. Pagel B E J (1990) “Baryonic dark matter and the chemical evolution of galaxies” in D Lynden-Bell and G Gihnore (eds), Baryonic Dark Matter Kluwer, Dordrecht, 237–256CrossRefGoogle Scholar
  35. Pagel B E J (1990) “Baryonic dark matter and the chemical evolution of galaxies” in D Lynden-Bell and G Gihnore (eds), Baryonic Dark Matter Kluwer, Dordrecht, 237–256CrossRefGoogle Scholar
  36. Pagel B E J and Patchett B E (1975) “Metal abundances in nearby stars and the chemical history of the solar neighbourhood” Mon Not R Astr Soc 172, 13–40ADSGoogle Scholar
  37. Pagel B E J and Simonson E A (1989) “Helium in three H II galaxies and the primordial helium abundance” Rev Mex Astr Astrofis, 18, 153–159ADSGoogle Scholar
  38. Pagel B E J, Terlevich R J and Melnick J (1986) “New measurements of helium in H II galaxies” Pub Astr Soc Pacific, 98, 1005–1008ADSCrossRefGoogle Scholar
  39. Peimbert M and Serrano A (1982) “Chemical evolution of galaxies-II. Variation of the heavy element yield with Z” Mon Not R Astr Soc 198, 563–572ADSGoogle Scholar
  40. Peimbert M and Torres-Peimbert S (1974) “Chemical composition of H II regions in the Large Magellanic Cloud and its cosmological implications” Astrophys J, 193, 327–333Google Scholar
  41. Peimbert M and Torres-Peimbert S (1976) “Chemical composition of H II regions in the Small Magellanic Cloud and the pregalactic helium abundance” Astrophys J, 203, 581–586ADSCrossRefGoogle Scholar
  42. Pettini M, Boksenberg A and Hunstead R W (1990) “Metal enrichment, dust and star formation in galaxies at high redshifts I. The z = 2.3091 absorber towards PHL 957” Astrophys J, 348, 48–56ADSCrossRefGoogle Scholar
  43. Rauch M, Carswell R F, Robertson J G, Shaver P A and Webb J K (1990) “The heavy element abundance in the z = 2.076 absorption system towards the QSO 2206–199N” Mon Not R Astr Soc, 242, 698–703ADSGoogle Scholar
  44. Rich R M (1988), “Spectroscopy and abundances of 88 K giants in Baade’s window” Astr J, 95, 828–865ADSCrossRefGoogle Scholar
  45. Ryan S, Norris J and Bessell M S (1990), “Element abundance rations in extremely metal-deficient stars” Astrophys J, in pressGoogle Scholar
  46. Scalo J M (1986) “The stellar initial mass function” Fund Cosm Phys, 11, 1–278ADSGoogle Scholar
  47. Scalo J (1989) “Top-heavy IMFs in starburst galaxies” in A Renzini, G. Fabbiano and J S Gallagher (eds) Windows on Galaxies, Dordrecht: KluwerGoogle Scholar
  48. Schmidt M (1963) “The rate of star formation II. The rate of formation of stars of different mass” Astrophys J, 137, 758–769ADSzbMATHCrossRefGoogle Scholar
  49. Searle L and Sargent W L W (1972) “Inferences from the composition of two dwarf blue galaxies” Astrophys J, 173, 25–33ADSCrossRefGoogle Scholar
  50. Searle L and Zinn R (1978) “Composition of the halo clusters and the formation the Galactic halo” Astrophys J, 225, 357–379ADSCrossRefGoogle Scholar
  51. Simonson E A (1990) Thesis Sussex UniversityGoogle Scholar
  52. Skillman E D, Kennicutt R C and Hodge P W (1979) “Oxygen abundances in nearby dwarf irregular galaxies” Astrophys J, 347, 875–882ADSCrossRefGoogle Scholar
  53. Smith H E, Cohen R D, Bums J E, Moore D J and Uchida B A (1989) “Ly a emission from disk absorption systems at high redshift: star formation in young galaxy disks” Astrophys J, 347, 87–95ADSCrossRefGoogle Scholar
  54. Sommer-Larsen J (1990a) “On the G-dwarf abundance distribution in the solar cylinder” preprintGoogle Scholar
  55. Sommer-Larsen J (1990b) “The formation and chemical evolution of the Galactic disk” submitted to Mon Not R Ast Soc Google Scholar
  56. Thum T X, Montmerle T and Van J T T (eds) (1987), Starbursts and Galaxy Evolution, Paris: Ed FrontièresGoogle Scholar
  57. Tinsley B M (1979) “Stellar lifetimes and abundance ratios in chemical evolution” Astrophys J, 229, 1046–1056ADSCrossRefGoogle Scholar
  58. Truran J W and Cameron A G W (1971) “Evolutionary models of nucleosynthesis in the Galaxy” Astrophys Space Sci, 14, 179–222ADSCrossRefGoogle Scholar
  59. Tully R B (1990) “The Hubble constant” in E Vangioni-Flam, M Cassé, J Audouze and J T T Van (eds) Astrophysical Ages and Dating Methods” Paris: Ed Frontières, 3–13Google Scholar
  60. van den Bergh S (1962) “The frequency of stars with different metal abundances” Astr J, 67, 486–490ADSCrossRefGoogle Scholar
  61. Wheeler J C, Sneden C and Truran J W (1989) “Abundance ratios as a function of metallicity” Ann Rev Astr Astrophys, 27, 279–349ADSCrossRefGoogle Scholar
  62. Wolfe A M (1986) “New evidence from the Lyman-alpha forest concerning the formation of galaxies” Phil Trans R Soc, London, A, 320, 503–515ADSCrossRefGoogle Scholar
  63. Yang J, Turner M S, Steigman G, Schramm D S and Olive K A (1984) “Primordial nucleosynthesis: a critical comparison of theory and observation” Astrophys J 281, 493–511ADSCrossRefGoogle Scholar
  64. Yoshii Y and Arimoto N (1987) “Spheroidal systems as a one-parameter family of mass at their birth” Astr Astrophys 188, 13–23ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • B. E. J. Pagel
    • 1
  1. 1.NORDITACopenhagen ∅Denmark

Personalised recommendations