Constraints on the Coupling of Weakly-Interacting Particles to Matter from Stellar Evolution

  • Naoki Iwamoto
Conference paper
Part of the Astrophysics and Space Science Library book series (ASSL, volume 169)


Axions couple to nucleons in both the KSVZ and DFSZ models.1 The matrix elements for nucleon-nucleon bremsstrahlung (nn → nna, pp → ppa, and np → npa) are calculated and the energy loss rates from these processes have been obtained in the case where the nucleons are degenerate with different neutron and proton Fermi momenta.2 The neutron-proton bremsstrahlung rate thus obtained differs from the previous results3,4: The phase space integrals are carried out explicitly for different neutron and proton Fermi momenta as compared with the approximate expression in Ref. 3. Furthermore, the rate vanishes when the proton concentration approaches zero, which is to be contrasted with the results in Ref. 4. The neutron-proton rate is found to be larger than the neutron-neutron rate by a factor 2–5 for typical values of the proton concentration in neutron star matter. Requiring the energy loss rate due to axion emission to be less than that of neutrino emission, one obtains the upper bound on the axion-nucleon coupling. This upper bound is slightly lower than the previous bound5 due to the enhanced axion energy loss rate, which results from the inclusion of the neutron-proton process.


  1. 1.
    R. D. Peccei, in CP Violation, edited by C. Jarlskog ( World Scientific, Singapore, 1989 ).Google Scholar
  2. 2.
    N. Iwamoto, to be published.Google Scholar
  3. 3.
    R. Mayle et al., Phys. Lett. B 203, 188 (1988); 219, 515 (1989).Google Scholar
  4. 4.
    R. P. Brinkmann and M. S. Turner, Phys. Rev. D 38, 2338 (1988).ADSCrossRefGoogle Scholar
  5. N. Iwamoto, Phys. Rev. Lett. 53, 1198 (1984);ADSCrossRefGoogle Scholar
  6. 5.
    N. Iwamoto, Phys. Rev. D 39, 2120 (1989).ADSCrossRefGoogle Scholar
  7. 6.
    H. E. Haber, preprint: SLAC-PUB-3834 (1985).Google Scholar
  8. 7.
    J. Ellis et al., Phys. Lett. B 215, 404 (1988).ADSCrossRefGoogle Scholar
  9. 8.
    L. E. Ibahez, Phys. Lett. B 137, 160 (1984);ADSCrossRefGoogle Scholar
  10. J. S. Hagelin, G. L. Kane, and S. Raby, Nucl. Phys. B 241, 638 (1984);ADSCrossRefGoogle Scholar
  11. J. A. Grifols, M. Martinez, and J. Sola, Nucl. Phys. B 268, 151 (1986).ADSCrossRefGoogle Scholar
  12. 9.
    T. Barklow et al. (Mark II Collaboration), Phys. Rev. Lett. 64, 2984 (1990).ADSCrossRefGoogle Scholar
  13. 10.
    G. S. Abrams et al. (Mark II Collaboration), Phys. Rev. Lett. 63, 2173 (1989);ADSCrossRefGoogle Scholar
  14. D. Decamp et al. (ALEPH Collaboration), Phys. Lett. B 235, 399 (1990);ADSCrossRefGoogle Scholar
  15. M. Z. Akrawy et al. (OPAL Collaboration), Phys. Lett. B 240, 497 (1990);ADSCrossRefGoogle Scholar
  16. P. Abreu et al. (DELPHI Collaboration), Phys. Lett. B 241 493 (1990);Google Scholar
  17. B. Adeva et al. (L3 Collaboration), Phys. Lett. B 249 341 (1990).ADSCrossRefGoogle Scholar
  18. 11.
    L. M. Krauss, Phys. Rev. Lett. 64, 999 (1990);ADSCrossRefGoogle Scholar
  19. L. M. Krauss, preprint: YCTP-P9–90 (1990).Google Scholar
  20. 12.
    H. Umeda, K. Nomoto, S. Tsuruta, and N. Iwamoto, work in progress.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • Naoki Iwamoto
    • 1
  1. 1.Department of Physics and AstronomyThe University of ToledoToledoUSA

Personalised recommendations