Stochastic Inflation Lattice Simulations: Ultra-Large Scale Structure of the Universe

  • D. S. Salopek
Conference paper
Part of the Astrophysics and Space Science Library book series (ASSL, volume 169)


Non-Gaussian fluctuations for structure formation may arise in inflation from the nonlinear interaction of long wavelength gravitational and scalar fields. Long wavelength fields have spatial gradients a -1∇ small compared to the Hubble radius, and they are described in terms of classical random fields that are fed by short wavelength quantum noise. Lattice Langevin calculations are given for a ‘toy model’ with a scalar field interacting with an exponential potential where one can obtain exact analytic solutions of the Fokker-Planck equation. For single scalar field models that are consistent with current microwave background fluctuations, the fluctuations are Gaussian. However, for scales much larger than our observable Universe, one expects large metric fluctuations that are non-Gaussian. This example illuminates non-Gaussian models involving multiple scalar fields which are consistent with current microwave background limits.


Scalar Field Hubble Parameter Lapse Function Exponential Potential Momentum Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bahcall, N. and Soneira, R., Astrophys. J. 270, 70 (1983).CrossRefGoogle Scholar
  2. 2.
    De Lapparent, V., Geller, M.J. and Huchra, J.P., Ap. J. 302, Ll (1986).ADSCrossRefGoogle Scholar
  3. 3.
    Dressler, A., Faber, S.M., Burstein, D., Davies, R.L., Lynden-Bell, D., Terlevich, R.J. and Wegner, G., Astrophys. J. Lett. 313, L37 (1986).ADSCrossRefGoogle Scholar
  4. 4.
    Maddox, S.J., Efstathiou, G., Sutherland, W.J. and Loveday, J., Mon. Not. R. Astr. Soc., 242, 43P (1990).ADSGoogle Scholar
  5. 5.
    Broadhurst, T.J., Ellis, R.S., Koo, D.C. and Szalay, A.S., Nature 343, 726 (1990).ADSCrossRefGoogle Scholar
  6. 6.
    Salopek, D.S. and Bond, J.R., Nonlinear Evolution of Long Wavelength Metric Fluctuations in Inflation Models, Phys. Rev. D42 (in press, 1990)Google Scholar
  7. 7.
    Salopek, D.S. and Bond, J.R., Stochastic Inflation and Nonlinear Gravity, Phys. Rev. D (in press, 1990)Google Scholar
  8. 8.
    Bardeen, J.M., Steinhardt, P.J. and Turner, M.S., Phys. Rev. D28, 670 (1983).ADSGoogle Scholar
  9. 9.
    Vilenkin, A., Phys. Rev. D27, 2848 (1983).MathSciNetADSGoogle Scholar
  10. 10.
    Starobinski, A.A., in Current Topics in Field Theory, Quantum Gravity, and Strings, Proc. Meudon and Paris VI, ed. H.T. de Vega and N. Sanchez 246 107 (Springer-Verlag, 1986 )CrossRefGoogle Scholar
  11. 11.
    Bardeen, J.M. and Bublik, G.J., Class. Quant. Gray. 5, L113 (1988).CrossRefGoogle Scholar
  12. 12.
    Goncharov, A.S., Linde, A.D. and Mukhanov, V.F., Intern. Jour. Mod. Phys. A2, 561 (1987).MathSciNetGoogle Scholar
  13. 13.
    Lucchin, F. and Matarrese, S., Phys. Rev. D32, 1316 (1985).ADSGoogle Scholar
  14. 14.
    Salopek, D.S, Bond, J.R. and Bardeen, J.M., Phys. Rev. D40, 1753 (1989).ADSGoogle Scholar
  15. 15.
    Ortolan, A., Lucchin, F. and Matarrese, S., Phys. Rev. D38, 465 (1988).ADSGoogle Scholar
  16. 16.
    Matarrese, S., Ortolan, A. and Lucchin, F. Phys. Rev. D40, 290 (1989).ADSGoogle Scholar
  17. 17.
    Salopek, D.S., in progress, (1991).Google Scholar
  18. 18.
    Yi, I., Vishniac, E.T. and Mineshige, S., University of Texas Preprint (1990).Google Scholar
  19. 19.
    Bardeen, J.M., Bond, J.R., Kaiser, N. and Szalay, A.S., Ap.J. 304, 15 (1986).ADSCrossRefGoogle Scholar
  20. 20.
    Halliwell, J.J. and Hawking, S., Phys. Rev. D31, 1777 (1985).MathSciNetADSGoogle Scholar
  21. 21.
    Halliwell, J.J., hit. J. Mod. Phys. A5, 2473 (1990).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • D. S. Salopek
    • 1
  1. 1.NASA/ Fermilab Astrophysics CenterBataviaUSA

Personalised recommendations