Advertisement

Magnetic Theory of Gravitation

  • Y. M. Cho
Conference paper
Part of the Astrophysics and Space Science Library book series (ASSL, volume 169)

Abstract

Recently a generalization of Einstein’s theory of gravitation has been proposed which can accommodate the gravitational monopoles. The generalization is made in such a way that the equations of motion become exactly symmetric under the dual transformation of the curvature tensor. The theory is characterize by a fundamental scale к which can be interpreted as a “magnetic” mass. In exact analogy with the Dirac’s generalization of Maxwell’s theory, the theory can be made sensible only if the energy E is quantized by the condition к E = 2πn, where n is an integer. We review the recent development on the subject.

Keywords

Bianchi Identity Geodesic Equation Dual Transformation Dirac String String Singularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. A. M. Dirac, Proc. Roy. Soc. A133 60(1931).ADSGoogle Scholar
  2. 2.
    T. T. Wu and C. N. Yang, Phys. Rev. D12, 3845(1975).ADSGoogle Scholar
  3. 3.
    A. Zee, Phys. Rev. Lett. 55, 2379(1985).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Y. M. Cho, SNUTP 90–07, submitted to Phys. Rev. Lett.Google Scholar
  5. 5.
    E. T. Newman, L. Tamburino, and T. Unti, J. Math. Phys. 4, 915(1963);MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. C. W. Misner, J. Math. Phys. 4, 924(1963);MathSciNetADSCrossRefGoogle Scholar
  7. M. Demianski and E. T. Newman, Bull. Acad. Pol. Sci. 14, 653(1966);zbMATHGoogle Scholar
  8. J. S. Dowker, Gen. Rel. Gray. 5, 603(1974).MathSciNetADSCrossRefGoogle Scholar
  9. 6.
    S. Ramaswamy and A. Sen, J. Math. Phys. 22, 2612(1981);MathSciNetADSCrossRefGoogle Scholar
  10. P. O. Mazur, Phys. Rev. Lett. 57, 929(1986).MathSciNetADSCrossRefGoogle Scholar
  11. 7.
    Y. M. Cho, J. Math. Phys. 16, 2029(1975);Google Scholar
  12. Y. M. Cho and P. G. O. Freund, Phys. Rev. D12, 1711(1975);MathSciNetADSGoogle Scholar
  13. Y. M. Cho and P. S. Jong, Phys. Rev. D12, 3789(1975).ADSGoogle Scholar
  14. 8.
    Y. M. Cho, Phys. Lett. 186B, 38(1987);ADSGoogle Scholar
  15. Y. M. Cho, Phys. Lett. 199B, 358(1987);ADSGoogle Scholar
  16. Y. M. Cho and D. S. Kimm, J. Math. Phys. 30, 1570(1989).MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 9.
    A. Ashtekar and A. Sen, J. Math. Phys. 23, 2168(1982).MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 10.
    R. L. Zimmerman and B. Y. Shahir, Gen. Rel. Gray. 21, 821(1989).MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 11.
    A. Staruszkiewicz, Acta. Phys. Pol. 24, 734(1963);MathSciNetGoogle Scholar
  20. J. R. Gott III and M. Alpert, Gen. Rel. Gray. 16, 243(1984);MathSciNetADSCrossRefGoogle Scholar
  21. D. Deser, R. Jackiw, and G. ‘t Hooft, Ann. Phys. (NY) 152, 220(1984).MathSciNetADSCrossRefGoogle Scholar
  22. 12.
    G. ‘t Hooft, Comm. Math. Phys. 117, 685(1988);MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. S. Deser and R. Jackiw, Comm Math. Phys. 118, 495(1988);MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. Y. Aharonov and D. Bohm, Phys. Rev. 115, 485(1959).MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. 13.
    P. de Sousa Gebert and R. Jackiw, Comm. Math. Phys. 124, 229(1989);MathSciNetADSCrossRefGoogle Scholar
  26. M. Alford and F. Wilczek, Phys. Rev. Lett. 62, 1071(1989).MathSciNetADSCrossRefGoogle Scholar
  27. 14.
    Y. M. Cho, Phys. Rev. Lett. 44, 1115(1980);ADSCrossRefGoogle Scholar
  28. Y. M. Cho, Phys. Rev. D23, 2415(1981).ADSGoogle Scholar
  29. 15.
    Y. M. Cho and D. H. Park, to be published.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • Y. M. Cho
    • 1
  1. 1.Department of PhysicsSeoul National UniversitySeoulKorea

Personalised recommendations