Advertisement

The Abundances of Deuterium, Helium and Lithium Test and Constrain the Standard Model of Cosmology

  • Gary Steigman
Conference paper
Part of the Astrophysics and Space Science Library book series (ASSL, volume 169)

Abstract

The standard hot big bang model with input from the experimentally tested standard model of particle physics (e.g., three flavors of neutrinos) is remarkably successful in accounting for the abundances of the light elements D, 3 He, 4 He and 7 Li. Accurate observations of the abundances of these light elements, along with the means to extrapolate them to their primordial values, provide an invaluable tool for testing the predictions of the standard cosmological model and for constraining the baryon density of the Universe. The current data on the abundances of the light elements is reviewed and is supplemented by model independent and some model dependent (i.e. galactic chemical evolution models) estimates to derive their primordial values. The inferred primordial abundances are compared with the predictions of nucleosynthesis in the standard cosmological model to test the consistency of the model and to constrain the allowed range of the baryon-to-photon ratio (η). The preferred value of η = 4 × 10-10 points to a very low baryon density (Ω B ≲ 0.1) and strengthens the case for nonbaryonic dark matter.

Keywords

Solar System Giant Planet Lithium Abundance Standard Cosmological Model Primordial Nucleosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baade, D. and Magain, P. (1988) Astron. Astrophys. 351, 31.Google Scholar
  2. Bahcall, J.N. and Ulrich, R.K. (1988) Rev. Mod. Phys. 60, 297.ADSCrossRefGoogle Scholar
  3. Bania, T.M., Rood, R.T. and Wilson, T.L. (1987) Ap. J. 323, 30.ADSCrossRefGoogle Scholar
  4. Beckman, J.E., Rebolo, R. and Molaro, P. (1986) in Advances in Nuclear Astrophysics (Editions Frontières) p. 29.Google Scholar
  5. Berrington, K.A. and Kingston, A.E. (1987) J. Phys. B20, 6631.ADSGoogle Scholar
  6. Black, D.C. (1971) Nature Phys. Sci. 234, 148.ADSCrossRefGoogle Scholar
  7. Black, D.C. (1972) Geochim. Cosmochim. Acta 36, 347.ADSCrossRefGoogle Scholar
  8. Boesgaard, A.M. (1987a) Ap. J. 321, 967.ADSCrossRefGoogle Scholar
  9. Boesgaard, A.M. (1987b) P.A.S.P. 99, 1067.ADSCrossRefGoogle Scholar
  10. Boesgaard, A.M. and Budge, K.G. (1988) Ap. J. 322, 410.ADSCrossRefGoogle Scholar
  11. Boesgaard, A.M., Budge, K.G. and Burck, E.E. (1988) Ap. J. 325, 749.ADSCrossRefGoogle Scholar
  12. Boesgaard, A.M., Budge, K.G. and Ramsay, M.E. (1988) Ap. J. 327, 389.ADSCrossRefGoogle Scholar
  13. Boesgaard, A.M. and Steigman, G. (1985) Ann. Rev. Astron. Astrophys. 23, 319.ADSCrossRefGoogle Scholar
  14. Clegg, R.E.S. (1987) MNRAS 229, 31.ADSGoogle Scholar
  15. Cota, S.A. and Ferland, G. (1988) Ap. J. 326, 889.ADSCrossRefGoogle Scholar
  16. Dalgarno, A. and Lepp, S. (1984) Ap. J. Lett. 287, L47.ADSCrossRefGoogle Scholar
  17. Davidson, L. and Kinman, T.D. (1985) Ap. J. Suppl. 58, 321.ADSCrossRefGoogle Scholar
  18. Davidson, K. Kinman, T.D. and Friedman, S.D. (1989) Astron. J. 97, 1591.ADSCrossRefGoogle Scholar
  19. Dearborn, D.S.P., Schramm, D.N. and Steigman, G. (1986) Ap. J. 302, 35.ADSCrossRefGoogle Scholar
  20. Deliyannis, C.P., Demarque, P. and Kawaler, S.D. (1990) Ap. J. Suppl. 73, 21.ADSCrossRefGoogle Scholar
  21. Dinnerstein, H.L. and Shields, G.A. (1986) Ap. J. 311, 45.ADSCrossRefGoogle Scholar
  22. Eberhardt, P. (1978) Proc. 9th Lunar Planet. Sci. Conf., p. 1027.Google Scholar
  23. Encrenaz, T. and Combes, M. (1982) Icarus 52, 54.ADSCrossRefGoogle Scholar
  24. Epstein, R.I., Lattimer, J.M. and Schramm, D.N. (1976) Nature 263, 198.ADSCrossRefGoogle Scholar
  25. Ferlet, R., Vidal-Madjar, A., Laurent, C. and York, D.G. (1980) Ap. J. 242, 576.ADSCrossRefGoogle Scholar
  26. Fich, M. and Silkey, M. (1991) Ap. J. 366, 107.ADSCrossRefGoogle Scholar
  27. Field, G.B. (1974) Ap. J. 187, 453.ADSCrossRefGoogle Scholar
  28. Frick, U. and Moniot, R.K. (1977) Proc. 8th Lunar Planet. Sci. Conf., p. 229.Google Scholar
  29. Geiss, J., Eberhardt, P., Bühler, F., Meister, J. and Signer, P. (1970), J. Geophys. Res. 75, 5972.ADSCrossRefGoogle Scholar
  30. Geiss, J. and Reeves, H. (1972) Astron. Astrophys. 18, 126.ADSGoogle Scholar
  31. Grevesse, N. and Anders, E. (1989) AIP Conf. Proc. 183, 1.ADSCrossRefGoogle Scholar
  32. Guenther, D.B., Jaffe, A. and Demarque, P. (1989) Ap. J. 345, 1022.ADSCrossRefGoogle Scholar
  33. Hobbs, L.M. and Duncan, D. (1987) Ap. J. 317, 796.ADSCrossRefGoogle Scholar
  34. Hobbs, L.M. and Pilachowski, C. (1986a) Ap. J. Lett. 309, L17.ADSCrossRefGoogle Scholar
  35. Hobbs, L.M. and Pilachowski, C. (1986b) Ap. J. Lett. 311, L37.ADSCrossRefGoogle Scholar
  36. Hobbs, L.M. and Pilachowski, C. (1988) Ap. J. 334, 734.ADSCrossRefGoogle Scholar
  37. Iben, I. (1967) Ap. J. 147, 624, 650.ADSCrossRefGoogle Scholar
  38. Jeffrey, P.M. and Anders, E. (1970) Geochim. Cosmochim. Acta 34, 1175.ADSCrossRefGoogle Scholar
  39. Kunde, V., Hanel, R. et al. (1982) Ap. J. 263, 443.ADSCrossRefGoogle Scholar
  40. Laurent, C., Vidal-Madjar, A. and York, D.G. (1979) Ap. J. 229, 923.ADSCrossRefGoogle Scholar
  41. Lequeux, J., Peimbert, M., Rayo, J.F., Serrano, A. and Torres-Peimbert, S. (1979) Astron. Astrophys. 80, 155.ADSGoogle Scholar
  42. Malaney, R.A. and Alcock, C.R. (1990) Ap. J. 351, 31.ADSCrossRefGoogle Scholar
  43. Mather, J.C., Cheng, E.S. et al. (1990) Ap. J. Lett. 354, L37.ADSCrossRefGoogle Scholar
  44. Pagel, B.E.J. (1988) in A Unified View of the Macro-and the Micro-Cosmos (World Scientific) p. 399.Google Scholar
  45. Pagel, B.E.J. (1989) in Baryonic Dark Matter (Klumer) p. 237.Google Scholar
  46. Pagel, B.E.J. (1990) Nordita Preprint 90/47A.Google Scholar
  47. Pagel, B.E.J., Terlevich, R.J. and Melnick, J. (1986) P.A.S.P. 98, 1005.ADSCrossRefGoogle Scholar
  48. Pagel, B.E.J. and Simonson, E.A. (1989) Rev. Mex. Astron. Astrof. 18, 153.ADSGoogle Scholar
  49. Peimbert, M. and Torres-Peimbert, S. (1974) Ap. J. 193, 327.ADSCrossRefGoogle Scholar
  50. Pequignot, D. and Aldrovandi, S.M.V. (1986) Astron. Astrophys. 161, 169.ADSGoogle Scholar
  51. Pilachowski, C.A., Booth, J. and Hobbs, L.M. (1987) P.A.S.P. 99, 1288.ADSCrossRefGoogle Scholar
  52. Rebolo, R., Molaro, P. and Beckman, J. (1988) Astron. Astrophys. 192, 192ADSGoogle Scholar
  53. Rogerson, J.B. and York, D.G. (1973) Ap. J. Lett. 186, L97.ADSCrossRefGoogle Scholar
  54. Rood, R.T., Steigman, G. and Tinsley, B.M. (1976) Ap. J. Lett. 207, L57.ADSCrossRefGoogle Scholar
  55. Rood, R.T., Wilson, T.L. and Steigman, G. (1979) Ap. J. Lett. 227, L97.ADSCrossRefGoogle Scholar
  56. Rood, R.T., Bania, T.M. and Wilson, T.L. (1984) Ap. J. 280, 629.ADSCrossRefGoogle Scholar
  57. Sackmann, I.-J., Boothroyd, A.J. and Fowler, W.A. (1990) Preprint (submitted to the Ap. J.).Google Scholar
  58. Sahu, K.C., Sahu, M. and Pottasch, S.R. (1988) Astron. Astrophys. 107, L1.ADSGoogle Scholar
  59. Sandage, A. and Tammann, G.A. (1990) Ap. J. 365, 1.ADSCrossRefGoogle Scholar
  60. Snow, T.P. (1975) Ap. J. Lett. 202, L87.ADSCrossRefGoogle Scholar
  61. Spite, F. and Spite, M. (1982a) Astron. Astrophys. 115, 357.ADSGoogle Scholar
  62. Spite, F. and Spite, M. (1982b) Nature 297, 483.ADSCrossRefGoogle Scholar
  63. Spite, F. and Spite, M. (1986) Astron. Astrophys. 163, 140.ADSGoogle Scholar
  64. Spite, F., Maillard, J.P. and Spite, M. (1984) Astron. Astrophys. 141, 56.ADSGoogle Scholar
  65. Spite, F. Spite, M., Peterson, R.C. and Chaffee, F.H. (1987) Astron. Astrophys. 172, L9.ADSGoogle Scholar
  66. Steigman, G. (1991) “Cosmic Lithium: Going Up Or Coming Down? (In Preparation).Google Scholar
  67. Steigman, G. and Tosi, M. (1991) “Galactic Evolution of Deuterium And Helium-3” (in Preparation).Google Scholar
  68. Tosi, M. (1988) Astron. Astrophys. 197, 33.ADSGoogle Scholar
  69. Turck-Chièze, S., Cahen, S., Cassé, M. and Doom, C. (1988), Ap. J. 335, 415.ADSCrossRefGoogle Scholar
  70. Vidal-Madjar, A., Laurent C., Bonnet, R.M. and York, D.G. (1977) Ap. J. 211, 91.ADSCrossRefGoogle Scholar
  71. Vidal-Madjar, A., Ferlet, R., Laurent, C. and York, D.G. (1982) Ap. J. 260, 128.ADSCrossRefGoogle Scholar
  72. Vidal-Madjar, A., Andreani, P., Cristiani, S., Ferlet, R., Lanz, T. and Vladilo, G. (1978) Astron. Astrophys. 177, L17.ADSGoogle Scholar
  73. Walker, T.P., Steigman, G., Schramm, D.N., Olive, K.A. and Kang, H.-S. (1991) Ap. J. (In Press, July 20, 1991 )Google Scholar
  74. Yang, J., Turner, M.S., Steigman, G., Schramm, D.N. and Olive, K.A. (1984) Ap. J. 281, 493.ADSCrossRefGoogle Scholar
  75. York, D.G. (1983) Ap. J. 264, 172.ADSCrossRefGoogle Scholar
  76. York, D.G. and Rogerson, J.B. (1976), Ap. J. 203, 378.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • Gary Steigman
    • 1
  1. 1.Physics DepartmentThe Ohio State UniversityColumbusUSA

Personalised recommendations