Advertisement

Could Cosmic QCD Phase Transition Produce Strange Quark Matter Which Survives until the Present Time?

  • T. Kajino
  • K. Sumiyoshi
Conference paper
Part of the Astrophysics and Space Science Library book series (ASSL, volume 169)

Abstract

Microscopic calculations using a chromoelectric flux tube model provide a low baryon penetrability through the phase boundary between the quark-gluon plasma and the hadron gas. The result is applied to the study of the evolution of baryon number density during the cosmic phase transition in quantum chromodynamics (QCD). Remarkable inhomogeneities of baryon number density result from a plausible range of QCD parameters constrained from lattice simulations. If the QCD phase transition is weakly first order, the strange quark matter could have been formed and survived evaporation and resolution in the hot early universe.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. H. Applegate and C. J. Hogan, Phys. Rev. D31(1985) 3037.ADSGoogle Scholar
  2. [2]
    C. R. Alcock, G. M. Fuller and G. J. Mathews, Ap. J. 320(1987) 439.ADSCrossRefGoogle Scholar
  3. [3]
    R. A. Malaney, and W. A. Fowler, Ap. J. 333(1988) 14.ADSCrossRefGoogle Scholar
  4. [4]
    E. Witten, Phys. Rev. D30(1984) 272.MathSciNetADSGoogle Scholar
  5. [5]
    A.H. Guth, Phys. Rev. D23(1981) 347.ADSGoogle Scholar
  6. [6]
    K. Sato, Mon. Not. Roy. Astron. Soc. 195(1981) 467.ADSGoogle Scholar
  7. [7]
    G. M. Fuller, G. J. Mathews and C. R. Alcock, Phys. Rev. D37, 1380 (1988).ADSGoogle Scholar
  8. [8]
    K. Sumiyoshi, T. Kajino, C. Alcock and G. Mathews, Phys. Rev. D42(1990) 3963.ADSGoogle Scholar
  9. [9]
    A. Casher, H. Neuberger and S. Nussinov, Phys. Rev. D20(1979) 179.ADSGoogle Scholar
  10. [10]
    J. Schwinger, Phys. Rev. 82(1951) 664.MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. [11]
    B. Banerjee, N. K. Glendenning and T. Matsui, Phys. Lett. 127B(1983) 453.ADSGoogle Scholar
  12. [12]
    K. Sumiyoshi, K. Kusaka, T. Kamio and T. Kajino, Phys. Lett. 225B(1989) 10.ADSGoogle Scholar
  13. [13]
    B. Andersson, G. Gustafson and T. Sjostrand, Nucl. Phys. B197(1982) 45.ADSCrossRefGoogle Scholar
  14. [14]
    K. Kajantie and H. Kurki-Suonio, Phys. Rev. D34(1986) 1719.ADSGoogle Scholar
  15. [15]
    T. Kajino, K. Kusaka and K. Sumiyoshi, preprint of Tokyo Metro. Univ. (1990).Google Scholar
  16. [16]
    M. Fukugita, H. Mino, M. Okawa and A. Ukawa, Phys. Rev. Lett. 65(1990) 816.ADSCrossRefGoogle Scholar
  17. [17]
    F.R. Brown, F.P. Butler, H.C. Chen, N.H. Christ, Z. Dong, W. Schaffer, L.I. Unger and A. Vaccarino, Phys. Rev. Lett. 65(1990) 2491.ADSCrossRefGoogle Scholar
  18. [18]
    T. Kajino, Phys. Rev. Lett. 66(1991) 125.ADSCrossRefGoogle Scholar
  19. [19]
    C. R. Alcock and E. Farhi, Phys. Rev. D32(1985) 1273.ADSGoogle Scholar
  20. [20]
    J. Madsen, H. Heiselberg and K. Riisager, Phys. Rev. D34(1986) 2947.ADSGoogle Scholar
  21. [21]
    C. Alcock and A. Olinto, Phys. Rev. D39(1989) 1233.ADSGoogle Scholar
  22. [22]
    T. Kajino, K. Sumiyoshi, C. Alcock and G. Mathews, in preparation.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • T. Kajino
    • 1
  • K. Sumiyoshi
    • 1
  1. 1.Department of PhysicsTokyo Metropolitan UniversityTokyoJapan

Personalised recommendations