Advertisement

Organism: A Meshwork of Selfless Selves

  • Francisco J. Varela
Part of the Boston Studies in the Philosophy of Science book series (BSPS, volume 129)

Abstract

Organism connotes a knotty dialectic: a living system makes itself into a entity distinct from its environment through a process that brings forth, through that very process, a world proper to the organism.

Keywords

Cellular Automaton Emergent Property Artificial Life Binocular Rivalry Abdominal Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lewontin, R. (1982), The Dialectical Biologist, MIT Press, Cambridge.Google Scholar
  2. 2.
    Langton, C. (Ed.) (1989), Artificial Life, Addison-Wesley: Redwood City.Google Scholar
  3. 3.
    Maturana, H. and F. Varela (1973), De Máquinas y Seres Vivos: Una teoría de la organizatión biológica, Editorial Universitaria: Santiago de Chile.Google Scholar
  4. 4.
    Maturana, H. and F. Varela (1980), Autopoiesis and Cognition: The Realization of the Living, D. Reidel: Boston. [Boston Studies in the Philosophy of Science, vol. 42].Google Scholar
  5. 5.
    Varela, F., H. Maturana, and R. Uribe (1974), Autopoiesis: the organization of living system, its characterization and a model, BioSystems 5: 187–195.CrossRefGoogle Scholar
  6. 6.
    Fleischaker, G. (1988), Autopoiesis: System logic and the origin of life, Ph.D. Dissertation, Boston University, Boston, MA.Google Scholar
  7. 7.
    Margulis, L. (1981), Symbiosis in Cell Evolution, W. H. Freeman, San Francisco.Google Scholar
  8. 8.
    Margulis, L. and D. Sagan (1986), Origins of Sex, Yale Univ. Press, New Haven.Google Scholar
  9. 9.
    Gardner, M. (1971), On cellular automata, self-reproduction, the Garden of Eden, and the game “life”, Sci. Amer. 224: 112.CrossRefGoogle Scholar
  10. 10.
    Wolfram, S. (1986), Theory and Applications of Cellular Automata, World Scientific, Singapore.Google Scholar
  11. 11.
    Toffoli, T. (1987), Cellular Automata Machines, MIT Press, Cambridge.Google Scholar
  12. 12.
    Deamer, D. and G. Barchfeld (1982), Encapsulation of macromolecules by lipid vesicles under simulated prebiotic conditions, J. Molec. Evol. 18: 203–206.PubMedCrossRefGoogle Scholar
  13. 13.
    Lazcano, A. (1986), Prebiotic evolution and the origin of cells, Treballs Societat Catal. Biol. 39: 73–103.Google Scholar
  14. 14.
    Baeza, I. M. Ibñ nez, A. Lazcano, C. Santiago, C. Arguello, C. Wong, and J. Oró, Liposomes with polyribonucleotides as models of precellular systems, Origins of Life 17: 187–199.Google Scholar
  15. 15.
    Deamer, D.W. (1985), Role of amphillic compounds in the evolution of membrane structure on the early Earth, Origins of Life 17: 3–25.Google Scholar
  16. 16.
    Luisi, L. and F. Varela (1989), Self replicating micelles: A minimal version of a chemical autopoietic system, Origins of Life 19: 633–643.CrossRefGoogle Scholar
  17. 17.
    Varela, F. (1979), Principles of Biological Autonomy, North-Holland/ Elsevier, New York.Google Scholar
  18. 18.
    Varela, F. (1988), Structural coupling of simple cellular automata: On the origin of meaning. In: E. Secarz, F. Celada, N.A. Mitchinson, and T. Tada, The Semiotics of Cellular Communication in the Immune System, NATO ASI Series, Vol. H23, Springer-Verlag, New York, pp. 151–161.Google Scholar
  19. 19.
    Castoriadis, C. (1987), L’état du sujet aujourd’hui, Topique 38: 7–39.Google Scholar
  20. 20.
    Margulis, L. and K. Schwartz (1988), Five Kingdoms: An Illustrated Guide to the Phyla of Life on Earth, W.H. Freeman, New York.Google Scholar
  21. 21.
    Buss, L. (1987), The Evolution of Individuality, Princeton Univ. Press, Princeton.Google Scholar
  22. 22.
    Bonner, J.T. (1988), The Evolution of Complexity, Princeton Univ. Press, Princeton.Google Scholar
  23. 23.
    Varela, F., B. Dupire, and A. Coutinho, (1988), Cognitive networks: Immune, neural and otherwise. In: A. Perelson (Ed.), Theoretical Immunology, Vol. 2. (SFI Series on Complexity), Addison Wesley, New Jersey, pp. 359–375.Google Scholar
  24. 24.
    Vaz, N. and F. Varela (1978), Self and non-sense: An organism-centered approach to immunology, Medical Hypothesis 4: 231–267.CrossRefGoogle Scholar
  25. 25.
    Coutinho, A., L. Forni, D. Holmberg, F. Ivars, and N. Vaz (1984), From an antigen-centered, clonal perspective on immune responses to an organism-centered network perspective of autonomous activity in a self-referential immune system, Immunol. Revs. 79: 151–168.CrossRefGoogle Scholar
  26. 26.
    Lundqvist, I., A. Coutinho, F. Varela, and D. Holmberg (1989), Evidence for the functional dynamics in an antibody network, Proc. Natl. Acad. Sci. (USA) 86: 5074–5078.CrossRefGoogle Scholar
  27. 27.
    Varela, F.M. and A. Coutinho (1991), Second generation immune networks. Immunol. Today. In press.Google Scholar
  28. 28.
    Coutinho, A. (1989), Beyond clonal selection and network, Immunol. Revs. 110: 63–87.CrossRefGoogle Scholar
  29. 29.
    Varela, F., A. Andersson, G. Dietrich, A. Sundblad, D. Holmberg, M. Kazatchkine, and A. Coutinho, The population dynamics of natural antibodies in normal and autoimmune individuals, Proc. Natl. Acad. Sci. (U.S.A.), In Press.Google Scholar
  30. 30.
    Varela, F. and S. Frenk (1987), The organ of form: Towards a biological theory of shape, J. Soc. Biol. Struct. 10: 73–83.CrossRefGoogle Scholar
  31. 31.
    Carew, T. and C. Sahley (1983), Invertebrate learning and memory: from behavior to molecules, Ann. Rev. Neurosci. 9: 435–487.CrossRefGoogle Scholar
  32. 32.
    Zecevic, D., J. Wu, L. Cohen, J. London, H. Höpp, C. Falk (1989), Hundreds of neurons in the Aplysia abdominal ganglion are active during the gill-withdrawal reflex, J. Neurosci. 9: 3681–3689.PubMedGoogle Scholar
  33. 33.
    John, E.R., Y Tang, A. Brill, A.B. Young, and K. Ono (1986), Double-labeled metabolic maps of memory, Science 233: 1167–1175.PubMedCrossRefGoogle Scholar
  34. 34.
    Singer, W. (1977), Control of thalamic transmission by corticofugal and ascending reticular pathways in the visual system, Physiol. Rev. 57: 386–420.PubMedGoogle Scholar
  35. 35.
    Steriade, M. and M. Deschenes (1985), The thalamus as a neuronal oscillator, Brain Res. Rev. 8: 1–63.CrossRefGoogle Scholar
  36. 36.
    Varela, F. and W. Singer (1987), Neuronal dynamics in the visual cortico-thalamic pathway revealed through binocular rivalry, Exp. Brain Res. 66: 10–20.PubMedCrossRefGoogle Scholar
  37. 37.
    Horn, G. and R. Hill (1968), Modifications of receptive fields of cells in the visual cortex occurring spontaneously and associated with bodily tilt, Nature 221: 186–188.CrossRefGoogle Scholar
  38. 38.
    Fishman, M.C. and P. Michael (1973), Integration of auditory information in the cat’s visual cortex, Vision Research 13: 1415–1419.PubMedCrossRefGoogle Scholar
  39. 39.
    Morell, F. (1972), Visual system’s view of acoustic space, Nature 238: 44–46.CrossRefGoogle Scholar
  40. 40.
    Allman, J., F. Meizen, and E. McGuiness (1985), Non-classical receptive field properties, Ann. Rev. Neuroscien. 8: 407–430.CrossRefGoogle Scholar
  41. 41.
    Abeles, M. (1984), Local Cortical Circuits, Springer Verlag, Berlin.Google Scholar
  42. 42.
    DeYoe, E. and D.C. Van Essen (1988), Concurrent processing streams in monkey visual cortex, Trends Neurosci. 11: 219–226.PubMedCrossRefGoogle Scholar
  43. 43.
    Minsky, M. (1987), The Society of Mind, Simon and Schuster, New York.Google Scholar
  44. 44.
    Llinás, R. (1988), The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function, Science 242: 1654–1664.PubMedCrossRefGoogle Scholar
  45. 45.
    Gevins, A., R. Schaffer, J. Doyle, B. Cutillo, R. Tannehill, and S. Bressler (1983), Shadows of thought: shifting lateralization of human brain electrical patterns during a brief visuo-motor task, Science 220: 97–99.PubMedCrossRefGoogle Scholar
  46. 46.
    Varela, F., A. Toro, E. John, and E. Schwartz (1981), Perceptual framing and cortical alpha rhythms, Neuropsychologia 19: 675–686.PubMedCrossRefGoogle Scholar
  47. 47.
    Goodwin, B. and P. Saunders (Eds.) (1989) Theoretical Biology: Epigenetic and Evolutionary Order from Complex Systems, Edinburgh University Press, Edinburgh.Google Scholar
  48. 48.
    Farmer, J., A. Lapedes, N. Packard, and B. Wendroff (Eds.) (1986), Evolution, Games and Learning, North-Holland, Amsterdam.Google Scholar
  49. 49.
    McClelland, J. and D. Rummelhart (1986), Parallel Distributed Processing: Studies on the Microstructure of Cognition, 3 vols., MIT Press, Cambridge.Google Scholar
  50. 50.
    Wolfram, S. (1984), Cellular automata as models for complexity, Nature 311: 419–424.CrossRefGoogle Scholar
  51. 51.
    Pasteels, J. and J. Deneubourg (1987), From Individual to Collective Behavior in Social Insects, Birkhäuser, Basel.Google Scholar
  52. 52.
    Wilson, E.O. (1971), The Insect Societies, Harvard Univ. Press, Cambridge.Google Scholar
  53. 53.
    Fresnau, D. and J. Lachaud (1985), La régulation sociale sociale: donnés préliminaires sur les facteurs individuels controlant l’organisation des taches chez Neoponera apicalis, Actes Coll. Insects Sociaux 2: 185–193.Google Scholar
  54. 54.
    Deneubourg, J., S. Aron, S. Goss, J. Pasteels, and G. Duerinck (1986), Random behavior, amplification processes and number of participants: how they contribute to the foraging properties of ants. In: Farmer et al. (Eds.), Evolution, Games and Learning, North-Holland, Amsterdam.Google Scholar
  55. 55.
    Newell, A. (1980), Physical symbol systems, Cognitive Scien. 4: 135–183.CrossRefGoogle Scholar
  56. 56.
    Plyshyn, Z. (1984), Computation and Cognition: Toward a Foundation for Cognitive Science, MIT Press, Cambridge.Google Scholar
  57. 57.
    Grossberg, S. (1984), Studies of Mind and Brain, D. Reidel, Boston. [Boston Studies in the Philosophy of Science, vol. 70].Google Scholar
  58. 58.
    Smolensky, P. (1988), On the proper treatment of connectionism, Beh. Brain Sci. 11: 1–74.CrossRefGoogle Scholar
  59. 59.
    Dennett, D. (1990a), Mother nature versus the walking encyclopedia: A western drama, in: Ramsey, S., D. Rummelhart, and S. Stich (Eds.), Philosophy and Connectionist Theory, (forthcoming).Google Scholar
  60. 60.
    Dennett, DJ (1987), The Intentional Stance, MIT Press, Cambridge.Google Scholar
  61. 61.
    Thompson, E., A. Palacios, and F. Varela (1991), Ways of coloring: Comparative color vision as a case study in cognitive science, Beh. Brain Sci. In press.Google Scholar
  62. 62.
    Fisher, S. (1990), In: G. Hattinger (Ed.), Virtuelle Welten, Linz.Google Scholar
  63. 63.
    Agree, Ph. (1988), The Dynamic Structures of Everyday Life, Report No. AI-TR 1085, MIT Artificial Intelligence Lab., Cambridge.Google Scholar
  64. 64.
    Brooks, R.A. (1986), Achieving artificial intelligence through building robots, A.I. Memo 899, MIT Artificial Intelligence Laboratory, May 1986.Google Scholar
  65. 65.
    Brooks, R.A. (1987), Intelligence without representation, MIT Artificial Intelligence Report, Cambridge, MA.Google Scholar
  66. 66.
    Dennett, D. (1990b), Review of Ch. Langten (Ed.), Artificial Life, Biology Philos. In press.Google Scholar
  67. 67.
    Humphreys, N. and D. Dennett (1989), Speaking for ourselves: An assessment of multiple personality disorder, Raritan 9: 68–98.Google Scholar
  68. 68.
    Dupuy, J.-R and F. Varela (1990), Understandings of Origins. In: Varela, F. and J.R Dupuy (Eds.), Understanding Origins: Contemporary ideas on the genesis of life, mind and society, Kluwer, Boston, In press.Google Scholar
  69. 69.
    Merleau-Ponty, M. (1952), Phenomenologie de la Perception, Gallimard, Paris.Google Scholar
  70. 70.
    Heidegger, M. (1983), Die Grundbegriffe der Metaphysik, Gesamtausgabe t.29/30, Klostermann, Frankfurt.Google Scholar
  71. 71.
    Varela, F., E. Thompson, and E. Rosch (1991), The Embodied Mind: Cognitive Science and Human Experience, MIT Press, Cambridge.Google Scholar
  72. 72.
    Wittgenstein, L. (1972), Philosophical Investigations, Basil Blackwell, Oxford.Google Scholar
  73. 73.
    Lewontin, R. (1983), The organism as the subject and object of evolution, Scientia 118: 63–82.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Francisco J. Varela
    • 1
  1. 1.C.R.E.A. Ecole PolytechniqueParisFrance

Personalised recommendations