Directed Mutation in Escherichia Coli: Theory and Mechanisms

  • Patricia L. Foster
Part of the Boston Studies in the Philosophy of Science book series (BSPS, volume 129)


For a haploid unicellular organism, such as Escherichia coli, that reproduces asexually by binary fission, the concept of “self”, or more appropriately, “individual”, may be indistinguishable from the concept of organism. Controversy has arisen in the past about whether and how such creatures maintain themselves as a species since every new mutant that appears could, theoretically, give rise to a clone of unique descendants. Indeed, based largely upon protein electrophoresis patterns it has been estimated that the worldwide population of E. coli consists of only 102–103 such clones [1]. This result implies that E. coli in the wild rarely engage in chromosomal recombination, and that the genetic exchanges that take place via extrachromosomal elements leave chromosomal genes largely unchanged [1, 2]. (However, see Reference 3 for an alternative interpretation).


Spontaneous Mutation RecA Protein Directed Mutation Mismatch Repair System Nonsense Codon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Selander, R.K., Caugant, D.A., and Whittam, T.S. 1987. Genetic structure and variation in natural populations of Escherichia coli. In Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology. J.L. Ingraham, K.B. Low, B. Magasanik, M. Schaechter, and H.E. Umbarger, editors. American Society for Microbiology, Washington, DC. 1625–1648.Google Scholar
  2. 2.
    Ochman, H., and Wilson, A.C. 1987. Evolutionary history of enteric bacteria. In Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology. J.L. Ingraham, K.B. Low, B. Magasanik, M. Schaechter, and H.E. Umbarger, editors. American Society for Microbiology, Washington, DC. 1649–1654.Google Scholar
  3. 3.
    Milkman, R., and Stoltzfus, A. 1988. Molecular evolution of the Escherichia coli chromosome. II. Clonal segments. Genetics 120: 359–366.PubMedGoogle Scholar
  4. 4.
    Rayssiguier, C., Thaler, D.S., and Radman, M. 1989. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature (London) 342: 396–400.CrossRefGoogle Scholar
  5. 5.
    Drake, J.W. 1969. Comparative rates of spontaneous mutation. Nature (London) 221: 1132.Google Scholar
  6. 6.
    Topal, M.D., and Fresco, J.R. 1976. Complementary base pairing and the origin of substitution mutations. Nature (London) 263: 285–289.CrossRefGoogle Scholar
  7. 7.
    Fersht, A.R., Knill-Jones, J.W., and Tsui, W-C. 1982. Kinetic basis of spontaneous mutation: Misinsertion frequencies, proofreading specificities and cost of proofreading by DNA polymerases of Escherichia coli. J. Molec. Biol. 156: 37–51.PubMedCrossRefGoogle Scholar
  8. 8.
    Cox, E.C. 1976. Bacterial mutator genes and the control of spontaneous mutation. Ann. Rev. Genet. 10: 135–156.PubMedCrossRefGoogle Scholar
  9. 9.
    Choy, H.E., and Fowler, R.G. 1985. The specificity of base pair substitutions induced by the mutL and mutS mutators in E. coli. Mutat. Res. 142: 93–97.CrossRefGoogle Scholar
  10. 10.
    Radman, M., and Wagner, R.E., Jr. 1986. Mismatch repair in Escherichia coli. Ann. Rev. Genet. 20: 523–538.Google Scholar
  11. 11.
    Ogden, G.B., Pratt, M.J., and Schaechter, M. 1988. The replicative origin of the E. coli chromosome binds to cell membranes only when hemimethylated. Cell 54: 127–135.PubMedCrossRefGoogle Scholar
  12. 12.
    Drake, J.W., and Allen, E.F. 1968. Antimutagenic DNA polymerases of bacteriophage T4. Cold Spring Harbor Symp. Quant. Biol. 33: 339–344.PubMedGoogle Scholar
  13. 13.
    Cox, E.C., and Gibson, T.C. 1974. Selection for high mutation rates in chemostats. Genetics 11: 169–184.Google Scholar
  14. 14.
    Leigh, E.G. 1970. Natural selection and mutability. Am. Natural. 104: 301–305.CrossRefGoogle Scholar
  15. 15.
    Geiger, J.R., and Speyer, J.F. 1977. A conditional antimutator in E. coli. Molec. Gen. Genet. 153: 87–97.CrossRefGoogle Scholar
  16. 16.
    Campbell, A.N. 1983. Transposons and their evolutionary significance. In Evolution of Genes and Proteins. M. Nei, and R.K. Koehn, editors. Sinauer Associates, Sunderland, MA, 259–279.Google Scholar
  17. 17.
    Chao, L., Vargas, C., Spear, B.B., and Cox, E.C. 1983. Transposable elements as mutator genes in evolution. Nature (London) 303: 633–635.CrossRefGoogle Scholar
  18. 18.
    Messer, W., and Noyer-Weidner, M. 1988. Timing and targeting: The biological functions of dam methylation in E. coli. Cell 54: 735–737.Google Scholar
  19. 19.
    Delbrück, M. 1946. Heredity and variations in microorganisms, Cold Spring Harbor Symp. Quant. Biol. 11: 154.Google Scholar
  20. 20.
    Shapiro, J.A. 1984. Observations on the formation of clones containing araB-lacZ cistron fusions. Molec. Gen. Genet. 194: 79–90.PubMedCrossRefGoogle Scholar
  21. 21.
    Cairns, J., Overbaugh, J., and Miller, S. 1988. The origin of mutants. Nature (London) 335: 142–145.CrossRefGoogle Scholar
  22. 22.
    Cairns, J. 1988. Scientific correspondence. Nature (London) 336: 527–528.CrossRefGoogle Scholar
  23. 23.
    Walker, G.C. 1984. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol. Rev. 48: 60–93.Google Scholar
  24. 24.
    Burckhardt, S.E., Woodgate, R., Scheuermann, R.H., and Echols, H. 1988. UmuD mutagenesis protein of Escherichia coli: Overproduction, purification, and cleavage by RecA. Proc. Natl. Acad. Sci. USA 85: 1811–1815.CrossRefGoogle Scholar
  25. 25.
    Nohmi, T., Battista, J.R., Dodson, L.A., and Walker, G.C. 1988. RecA-mediated cleavage activates UmuD for mutagenesis: Mechanistic relationship between transcriptional derepression and posttranslational activation. Proc. Natl. Acad. Sci. USA 85: 1816–1820.PubMedCrossRefGoogle Scholar
  26. 26.
    Shinagawa, H., Iwasaki, H., Kato, T., and Nakata, A. 1988. RecA protein-dependent cleavage of UmuD protein and SOS mutagenesis. Proc. Natl. Acad. Sci. USA 85: 1806–1810.PubMedCrossRefGoogle Scholar
  27. 27.
    Freitag, N., and McEntee, K. 1989. “Activated”-RecA protein affinity chromatography of LexA repressor and other SOS-regulated proteins. Proc. Natl. Acad. Sci. USA 86: 8363–8367.PubMedCrossRefGoogle Scholar
  28. 28.
    Bridges, B.A. 1988. Mutagenic DNA repair in Escherichia coli XVI. Mutagenesis by ultraviolet light plus delayed photoreversal in recA strains. Mutat. Res. 198: 343–350.PubMedGoogle Scholar
  29. 29.
    Dutreix, M.P., Moreau, P.L., Bailone, A., Galibert, F., Battista, J.R., Walker, G.C., and Devoret, R. 1989. New recA mutations that dissociate the various RecA protein activities in Escherichia coli provide evidence for an additional role for RecA protein in UV-mutagenesis. J. Bacteriol. 171: 2415–2423.PubMedGoogle Scholar
  30. 30.
    Villani, G., Bouteux, S., and Radman, M. 1975. Mechanisms of ultraviolet induced mutagenesis: Extent and fidelity of in vitro DNA synthesis on irradiated templates. Proc. Natl. Acad. Sci. USA 78: 3037–3041.Google Scholar
  31. 31.
    Fersht, A.R., and Knill-Jones, J.W. 1983. Contribution of 3’ → 5’ exonuclease activity of DNA polymerase III holoenzyme from Escherichia coli to specificity. J. Molec. Biol. 165: 669–682.PubMedCrossRefGoogle Scholar
  32. 32.
    Lu, C., Scheuermann, R.H., and Echols, H. 1986. Capacity of RecA protein to bind preferentially to UV lesions and inhibit the editing subunit (epsilon) of DNA polymerase III: A possible mechanism for SOS-induced targeted mutagenesis. Proc. Natl. Acad. Sci. USA 83: 619–623.PubMedCrossRefGoogle Scholar
  33. 33.
    Foster, P.L., and Sullivan, A.D. 1988. Interactions between epsilon, the proofreading subunit of DNA polymerase III, and proteins involved in the SOS response of Escherichia coli. Molec. Gen. Genet. 214: 467–473.Google Scholar
  34. 34.
    Foster, P.L., Sullivan, A.D., and Franklin, S.B. 1989. Presence of the dnaQ-rnh divergent transcriptional unit on a multicopy plasmid inhibits induced mutagenesis in Escherichia coli. J. Bacteriol. 171: 3144–3151.Google Scholar
  35. 35.
    Bridges, B.A., and Woodgate, R. 1985. Mutagenic repair in Escherichia coli: Products of the recA gene and of the umuD and umuC genes act at different steps in UV-induced mutagenesis. Proc. Natl. Acad. Sci. USA 82: 4193–4197.PubMedCrossRefGoogle Scholar
  36. 36.
    Battista, J.F., Nohmi, T., Donnelly, C.E., and Walker, G.C. 1989. Role of UmuD and UmuC in UV and chemical mutagenesis. In Mechanism and Consequences of DNA Damage Processing. E. Friedberg, and P. Hanawalt, editors. Liss, New York. 455–459.Google Scholar
  37. 37.
    Foster, P.L., Eisenstadt, E., and Cairns, J. 1982. Random components in mutagenesis. Nature (London) 299: 365–367.CrossRefGoogle Scholar
  38. 38.
    Miller, J.H. 1982. Carcinogens induce targeted mutations. Cell 31: 5–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Eisenstadt, E. 1988. SOS mutagenesis in Escherichia coli occurs primarily, perhaps exclusively, at sites of DNA damage. In DNA Replication and Mutagenesis. R.E. Moses, and W.C. Summers, editors. American Society for Microbiology, Washington, DC. 397–402.Google Scholar
  40. 40.
    Miller, J.H., and Low, K.B. 1984. Specificity of mutagenesis resulting from the induction of the SOS system in the absence of mutagenic treatment. Cell 37: 675–682.PubMedCrossRefGoogle Scholar
  41. 41.
    Ghosh, S.K., Panda, D.K., and Das, J. 1989. Lack of umuDC gene functions in Vibrio cholerae cells. Mutat. Res. 210: 149–156.PubMedGoogle Scholar
  42. 42.
    Sedgwick, S.G., and Goodwin, P.A. 1985. Differences in mutagenic and recombinational DNA repair in enterobacteria. Proc. Natl. Acad. Sci. USA 82: 4172–4176.PubMedCrossRefGoogle Scholar
  43. 43.
    Molina, A.N., Baburdrl, M., Tamaro, M., Venturini, S., and Monti-Bragadin, C. 1979. Enterobacteriacea plasmids enhancing chemical mutagenesis and their distribution among incompatability groups. FEMS Lett. 5: 33–37.CrossRefGoogle Scholar
  44. 44.
    Upton, C., and Pinney, R.J. 1980. Expression of eight unrelated+ Muc plasmids in eleven DNA repair deficient Escherichia coli strains. Mutat. Res. 112: 261–273.Google Scholar
  45. 45.
    Strike, P., and Lodwick, D. 1987. Plasmid genes affecting DNA repair and mutation. J. Cell Sci. 6 (Suppl.): 303–321.Google Scholar
  46. 46.
    Danchin, A. 1988. Scientific correspondence. Nature (London) 336: 527–527.CrossRefGoogle Scholar
  47. 47.
    Hall, B.G. 1988. Adaptive evolution that requires multiple spontaneous mutations. I. Mutations involving an insertion sequence. Genetics 120: 887–897.PubMedGoogle Scholar
  48. 48.
    Hall, B.G., Yokoyama, S., and Calhoun, D.H. 1983. Role of cryptic genes in microbial evolution. Molec. Biolog. Evolution 1: 109–124.Google Scholar
  49. 49.
    Hall, B.G. 1982. Evolution on a petri dish. In Evolutionary Biology. Vol. 15. M.K. Hecht, B. Wallace, and G.T. Prance, editors. Plenum Press, New York. 85–150.Google Scholar
  50. 50.
    Ryan, F.J., Okada, T., and Nagata, T. 1963. Spontaneous mutation in spheroplasts of Escherichia coli. J. gen. Microbiol. 30: 193–199.PubMedGoogle Scholar
  51. 51.
    Arber, V., Iida, S., Jutte, H., Caspers, P., Meyer, J., and Hanni, C. 1978. Rearrangements of genetic material in Eschericia coli as observed on the bacteriophage P1 plasmid. Cold Spring Harbor Symp. Quant. Biol. 43: 1197–1208.Google Scholar
  52. 52.
    Hall, B.G. 1990. Spontaneous point mutations that occur more often when they are advantageous than when they are neutral. Genetics 126: 5–16.PubMedGoogle Scholar
  53. 53.
    Groat, R.G., Schultz, J.E., Zychlinsky, E., Bockman, A., and Matin, A. 1986. Starvation proteins in Escherichia coli: Kinetics of synthesis and role in starvation survival. J. Bacteriol. 168: 486–493.PubMedGoogle Scholar
  54. 54.
    Koch, A.L. 1971. The adaptive responses of Escherichia coli to a feast and famine existence. Adv. Microb. Physiol. 6: 147–217.PubMedCrossRefGoogle Scholar
  55. 55.
    Lim, D., and Maas, W.K. 1989. Reverse transcriptase-dependent synthesis of a covalently linked, branced DNA-RNA compound in E. coli B. Cell 56: 891–904.PubMedCrossRefGoogle Scholar
  56. 56.
    Lampson, B.C., Sun, J., Hsu, M-Y, Vallejo-Ramirez, J., Inouye, S., and Inouye, M. 1989. Reverse transcriptase in a clinical strain of Escherichia coli: Production of branched RNA-linked msDNA. Science 243: 1033–1038.PubMedCrossRefGoogle Scholar
  57. 57.
    Stahl, F.W. 1988. A unicorn in the garden. Nature (London) 335: 112–113.CrossRefGoogle Scholar
  58. 58.
    Davis, B.D. 1989. Transcriptional bias: A non-Lamarckian mechanism for substrate-induced mutations. Proc. Natl. Acad. Sci. USA 86: 5005–5009.PubMedCrossRefGoogle Scholar
  59. 59.
    Fitch, W.M. 1982. The challenges to Darwinism since the last centennial and the impact of molecular studies. Evolution 36(6): 1133–1143,CrossRefGoogle Scholar
  60. 60.
    Crick, F.H.C. 1957. On protein synthesis. Symp. Soc. Exp. Biol. 12: 138–163.Google Scholar
  61. 61.
    Temin, H.M. 1971. The protovirus hypothesis: Speculations on the significance of RNA-directed DNA synthesis for normal development and carcinogenesis. J. Natl. Cancer Inst. 46: iii.Google Scholar
  62. 62.
    Reanney, D. 1984. Genetic noise in evolution?. Nature (London) 307: 318–319.CrossRefGoogle Scholar
  63. 63.
    Postgate, J. 1967. Viability measurements and the survival of microbes under minimum stress, Adv. Microb. Physiol. 1: 1–23.CrossRefGoogle Scholar
  64. 64.
    Charlesworth, D., Charlesworth, B., and Bull, J.J. 1988. Scientific correspondence. Nature (London) 336: 525–525.CrossRefGoogle Scholar
  65. 65.
    Tessman, I. 1988. Scientific correspondence. Nature (London) 336: 527–527.CrossRefGoogle Scholar
  66. 66.
    Lenski, R.E., Slatkin, M., and Ayala, F.J. 1989. Mutation and selection in bacterial populations: Alternatives to the hypothesis of directed mutation. Proc. Natl. Acad. Sci. USA 86: 2775–2778.PubMedCrossRefGoogle Scholar
  67. 67.
    Lenski, R.E., and Mittler, J.E. 1990. New data on excisions of Mu from E. coli MCS2 cast doubt on directed mutation hypothesis. Nature (London) 344: 173–175.CrossRefGoogle Scholar
  68. 68.
    Levin, B.R., Gordon, D.M., and Stewart, F.M. 1990. Is natural selction the composer as well as the editor of genetic variation? (in press).Google Scholar
  69. 69.
    Hall, B.G. 1989. Selection, adaptation, and bacterial operons. Genome 31: 265–271.PubMedCrossRefGoogle Scholar
  70. 70.
    Benson, S.A. 1988. Scientific correspondence. Nature (London) 336: 21–22.CrossRefGoogle Scholar
  71. 71.
    Cullis, C.A. 1987. The generation of somatic and heritable variation in reponse to stress. Am. Natural. 130: s62–s73.CrossRefGoogle Scholar
  72. 72.
    Cairns, J., and Foster, P.L. 1991. Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics (in press).Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Patricia L. Foster
    • 1
  1. 1.Boston University School of Public HealthUSA

Personalised recommendations