Skip to main content

Current-Voltage Characteristics of the Bacteriorhodopsin

  • Chapter
Molecular Electronics

Part of the book series: Topics in Molecular Organization and Engineering ((MOOE,volume 7))

  • 198 Accesses

Abstract

Transmembrane proton transport driven by light-dependent bacteriorhodopsin (BR) has been investigated theoretically. A general expression for the current-voltage characteristic of bacteriorhodopsin has been derived. A relationship has been established between the parameters of the structure of BR and the current-voltage characteristic. The best fit between theory and experiment was observed when the distance between the Schiff base and periplasmatic side of the membrane was supposed to be equal to the length of a chain containing 3–5 hydrogen bonds. The efficiency of proton transfer is found to increase with decreasing distance. The experiments which should be done to verify the validity of the developed theoretical approach are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birge, R.R. and Lawrence, A.F. (1988) ‘Optical random access memory based on bacteriorhodopsin’, In Symp. on Mol. Electronics and Biocomputers, July 19–22, Santa-Clara, CA, 40 p.

    Google Scholar 

  2. Trissl, H.-W. (1987) ‘Der Biologische Photodiode’, Optoelectr. Magazin 3, 105–107.

    Google Scholar 

  3. Oesterhelt, D. and Stoeckenius, W. (1973) ‘Functions of a new photoreceptor membrane’, Proc. Nat. Acad. Sci. USA, 70, 2853–2857.

    Article  ADS  Google Scholar 

  4. Lozier, R.H., Bogomolni, R.A. and Stoeckenius, W. (1975) ‘Bacteriorhodopsin: a light-drive proton pump in Halobacterium halobium’, Biophys. J. 15, 955–962.

    Article  ADS  Google Scholar 

  5. Ovchinnikov, Yu.A. (1982) ‘Rhodopsin and bacteriorhodopsin: structure-function relationships’, FEBS Lett. 148, 179–191.

    Article  Google Scholar 

  6. Lemke, H.D. and Oesterhelt, D. (1981) ‘Lysin 216 is a binding site of the retinyl-moiety in bacteriorhodopsin’, FEBS Lett. 128, 255–260.

    Article  Google Scholar 

  7. Lozier, R.H., Niedeberger, W., Bogomolni, R.A., Hwang, S. and Stoeckenius, W. (1976) ‘Kinetics and stoichiometry of light-induced proton release and uptake from purple membrane fragments, Halobacterium halobium cell envelopes, and phospholipid vesicles containing oriented purple membranes’, Biochim. Biophys. Acta. 440, 545–556.

    Article  Google Scholar 

  8. Lewis, A., Spoonhower, J., Bogomolni, R.A., Lozier, R.H. and Stoeckenius, W. (1974) ‘Tunable laser resonance Raman spectroscopy of bacteriorhodopsin’, Proc. Nat. Acad. Sci. USA, 71, 4462–4466.

    Article  ADS  Google Scholar 

  9. Chernavskaya, N.M. and Chernavsky, D.S. (1978) ‘Physical aspects of the bacteriorhodopsin action’, Preprint of Physical Inst. Acad. Sci. USSR, No 61, 42 pp.

    Google Scholar 

  10. Schulten, K. and Tavan, P. (1978) ‘A mechanism for the light-driven proton pump’, Nature 272, 85–86.

    Article  ADS  Google Scholar 

  11. Packer, L. (ed.) (1986) Methods Enzymol. v. 127, New York, London, Willey, 326 pp.

    Google Scholar 

  12. Nagle, J.E. and Tristam-Nagle, S. (1983) ‘Hydrogen bonded chain mechanism for proton conduction and proton pumping’, J. Memb. Biol. 74, 1–14.

    Article  Google Scholar 

  13. Lauger, P. (1984) ‘Thermodynamic and kinetic of electrogenic ion pumps’, Biochim. et Biophys. Acta. 779, 307–341.

    Article  Google Scholar 

  14. Stoeckenius, W. (1977) ‘Structure and function of light-driven ion pump’, J. Gen. Physiol. 70, A23.

    Article  Google Scholar 

  15. Merz, H. and Zundel, G. (1981) ‘Proton conduction in bacteriorhodopsin via a hydrogen-bonded chain with large polarizability’, Biochem. Biophys. Res. Commun. 101, 540–546.

    Article  Google Scholar 

  16. Portnov, V.I., Mirsky, V.M. and Markin, V.S. (1988) ‘Current-voltage characteristic of the bacteriorhodopsin’, Biol. Membranes 5, 198–216.

    Google Scholar 

  17. Onsager, L. (1967) ‘Thermodynamics and some molecular aspects of biology’, in F.O. Schmitt (ed.) Neurosciences, Rockefeller Univ. Press, New York, 75–79.

    Google Scholar 

  18. Onsager, L. (1969) ‘The motion of ions: Principle and concepts’, Science. 166, 1359–1364.

    Article  ADS  Google Scholar 

  19. Oesterhelt, D. (1976) ‘Bacteriorhodopsin as an example of a light-driven proton pump’, Angew. Chem. 15, 17–24.

    Article  Google Scholar 

  20. Drachev, L.A., Kaulen, A.D., Khitrina, L.V. and Sculachev, V.P. (1981) ‘Fast stages of photoelectric process in biological membranes. I. Bacteriorhodopsin’, Eur. J. Biochem. 117, 461–470.

    Article  Google Scholar 

  21. Drachev, L.A. (1985) Electric potential generation by membrane proteins, Diss. Doctor of Sci. Moscow, 46 pp. (in Russian).

    Google Scholar 

  22. Gurija, G.T. and Krasnov, Yu.K. (1989) ‘Proton transduction through the hydrogen bonded chains’, Doklady Sov. Acad. Sci. 304, 452–456.

    Google Scholar 

  23. Huang, K.-S., Radhakrishnan, R., Barley, H. and Khorana, H.G. (1982) ‘Orientation of retinal in bacteriorhodopsin as studied by cross linking using a photosensitive analog of retinal’, J. Biol. Chem. 257, 1361–1366.

    Google Scholar 

  24. Drachev, L.A., Kaulen, A.D. and Skulachev, V.P. (1985) ‘The nature of electrogeneous phases of the bacteriorhodopsin’s photocycle and localization of retinal’, Doklady Sov. Acad. Sci. 281, 176–180.

    Google Scholar 

  25. Nabiev, I.R., Efremov, R.G., Chumanov, G.D. and Kuryatov, A.B. (1985) ‘Localization of the retinal aldimyne with respect to membrane surface’, Biol. Membranes. 2, 1003–1015.

    Google Scholar 

  26. Braun, D., Dencher, N.A., Fahr, A., Lindau, M. and Heyn, M.P. (1988) ‘Nonlinear voltage dependence of the light-driven proton pump current of bacteriorhodopsin’, Biophys. J. 53, 617–621.

    Article  ADS  Google Scholar 

  27. Balesku, R. (1975) ‘Equilibrium and nonequilibrium statistical mechanic’, v. 1, Wiley & Sons Inc., New York, 405 pp.

    Google Scholar 

  28. Mukohata, Y., Sugiyama, Y., Ihara, K. and Yoshida, M. (1988) ‘An Australian Halobacterium contains a novel proton pump retinal protein’, Biochem. Biophys. Res. Commun. 151, 1339–1345.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gurija, G.T., Krasnov, Y.K., Chamorovsky, S.K. (1991). Current-Voltage Characteristics of the Bacteriorhodopsin. In: Lazarev, P.I. (eds) Molecular Electronics. Topics in Molecular Organization and Engineering, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3392-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3392-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5500-0

  • Online ISBN: 978-94-011-3392-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics