Advertisement

Carbonaceous Compounds in Comets: Infrared Observations

  • T. Encrenaz
  • R. Knacke
Part of the Astrophysics and Space Science Library book series (ASSL, volume 167)

Abstract

The Comet Halley observations showed that carbon is a major component of the comet nucleus, with mass spectroscopic data giving near-cosmic C/O ratios. Gaseous and solid compounds were also observed with infrared spectroscopy, which gave detections of CO and CO2, probable detections or upper limits of H2CO and CH4, and a tentative detection of OCS. The CH4/CO ratio of less than unity in Comet Halley points to a CO-rich solar nebula; however, the ratio is higher than in interstellar clouds. A broad, complicated emission feature near 3.4 µm is evidence for carbonaceous compounds containing C-H groups in gas or solid phases. Analysis of radiation mechanisms and abundance constraints suggests that thermal emission or transient heating by single photons can account for the 3.4-µm emission feature. The band resembles (but is not identical to) bands of carbonaceous chondrite organic material, synthetic materials, and interstellar carbonaceous bands. Direct connections among these materials are possible, but have not been established.

Keywords

Polycyclic Aromatic Hydrocarbon Thermal Emission Emission Feature Carbonaceous Material Molecular Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A’Hearn, M.F., et al. (1986). ‘Cyanogen Jets in Comet Halley,’ Nature, 324, 649–651.ADSCrossRefGoogle Scholar
  2. A’Hearn, M.F., and Feldman, P.D. (1980). ‘Carbon in Comet Bradfield 1979l,’ Astrophys. J., 242, L187–L190.ADSCrossRefGoogle Scholar
  3. A’Hearn, M.F., Feldman, P.D., and Schleicher, D.G. (1983). ‘The Discovery of S2 in Comet IRAS-Araki-Alcock (1983d),’ Astrophys. J., 274, L99–L103.ADSCrossRefGoogle Scholar
  4. Allamandola, L. (1988). Private communication.Google Scholar
  5. Allen, D.A., and Wickramasinghe, D.T. (1987). ‘Discovery of Organic Grains in Comet Wilson,’ Nature, 329, 615–616.ADSCrossRefGoogle Scholar
  6. Allen, M., et al. (1987). ‘Evidence for Methane and Ammonia in the Coma of Comet P/Halley,’ Astron. Astrophys., 187, 502–512.ADSGoogle Scholar
  7. Anders, E., Hayatsu, R., and Studier, M.H. (1973). ‘Organic Compounds in Meteorites,’ Science, 182, 781–790.ADSCrossRefGoogle Scholar
  8. Azoulay, G., and Festou, M.C. (1986). ‘The Abundance of Sulphur in Comets,’ in C.-I. Lagerkvist et al. (eds.), Asteroids, Comets, Meteors II, Uppsala University Press, Uppsala, pp. 273–277.Google Scholar
  9. Baas, F., Geballe, T.R., and Walther, D.M. (1986). ‘Spectroscopy of the 3.4-Micron Emission Feature in Comet Halley,’ Astrophys. J., 311, L97–L101.ADSCrossRefGoogle Scholar
  10. Becklin, E.E., and Westphal, J.A. (1966). ‘Infrared Observations of Comet 1965f,’ Astrophys. J., 145, 445–453.ADSCrossRefGoogle Scholar
  11. Bellamy, L.J. (1975). ‘The Infrared Spectra of Complex Molecules,’ Vol. I, Chapman and Hall, London.Google Scholar
  12. Biermann, L., Giguere, P.T., and Huebner, W.F. (1982). ‘A Model of a Comet Coma With Interstellar Molecules in the Nucleus,’ Astron. Astrophys., 108, 221–226.ADSGoogle Scholar
  13. Bisikalo, D.V., Repin, S.V., and Strelnitskiz, V.S. (1986). Astron. Tsirk. No. 1450.Google Scholar
  14. Bockelee-Morvan, D. (1987). ‘A Model for the Excitation of Water in Comets,’ Astron. Astrophys., 181, 169–181.ADSGoogle Scholar
  15. Bockelee-Morvan, D., and Crovisier, J. (1987). ‘The 2.7-µm Water Band of Comet P/Halley: Interpretation of Observations by an Excitation Model,’ Astron. Astrophys., 187, 425–430.ADSGoogle Scholar
  16. Bockelee-Morvan, D.M., et al. (1987). ‘Molecular Observations of Comets P/Giacobini-Zinner 1984 and P/Halley 1982i at Millimeter Wavelengths,’ Astron. Astrophys., 180, 253–262.ADSGoogle Scholar
  17. Bregman, J.D., Campins, H., Witteborn, F.C., Wooden, D.M., Rank, D.M., Allamandola, L.J., Cohen, M., and Tielens, A.G.G.M. (1987). ‘Airborne and Groundbased Spectrophotometry of Comet P/Halley From 15 to 13 Micrometers,’ Astron. Astrophys., 187, 616–620.ADSGoogle Scholar
  18. Brooke, T.Y., and Knacke, R.F. (1986). ‘The Nucleus of Comet P/Arend-Rigaux,’ Icarus, 67, 80–87.ADSCrossRefGoogle Scholar
  19. Brooke, T.Y., and Tokunaga, A.T. (1990). ‘Comparison of the 3.4-µm Emission Feature in Comets,’ Icarus, in press.Google Scholar
  20. Brooke, T.Y., Knacke, R.F., Owen, T.C., and Tokunaga, A.T. (1989). ‘Spectroscopy of Emission Features Near 3 Microns in Comet Wilson (1986l),’ Astrophys. J., 336, 971–978.ADSCrossRefGoogle Scholar
  21. Brooke, T.Y., Tokunaga, A.T., Knacke, R.F., Owen, T.C., Mumma, M.J., Reuter, D., and Storrs, A.D. (1989). ‘Detection of the 3.4-and 2.8-µm Emission Features in Comet Bradfield (1987s),’ Icarus, in press.Google Scholar
  22. Brownlee, D.E. (1988). ‘A Comparison of Halley Dust With Meteorites, Interplanetary Dust, and Interstellar Grains,’ in M.S. Hanner (ed.), Infrared Observations of Comets Halley and Wilson and Properties of the Grains, NASA Conf. Pub. 3004, pp. 66–67.Google Scholar
  23. Butchart, I., McFadzean, A.D., Whittet, D.C.B., Geballe, T.R., and Greenberg, J.M. (1986). ‘The Micron Spectroscopy of the Galactic Center Source IRS 7,’ Astron. Astrophys., 154, L5–L7.ADSGoogle Scholar
  24. Campins, H., et al. (1986). ‘Airborne Spectrophotometry of Comet Halley From 5 to 9 Microns,’ in Proc. 20th ESLAB Symposium on the Exploration of Halley’s Comet, ESA SP-250, pp. 121–124.Google Scholar
  25. Chin, G., and Weaver, H.A. (1984). ‘Vibrational and Rotational Excitation of CO in Comets: Nonequilibrium Calculations,’ Astrophys. J., 285, 858–869.ADSCrossRefGoogle Scholar
  26. Chyba, C., and Sagan, C. (1987a). ‘Infrared Emission by Organic Grains in the Coma of Comet Halley,’ Nature, 330, 350–353.ADSCrossRefGoogle Scholar
  27. Chyba, C., and Sagan, C. (1987b). ‘Cometary Organics But No Evidence for Bacteria,’ Nature, 329, 208.ADSCrossRefGoogle Scholar
  28. Chyba, C., Sagan, C., and Mumma, M.J. (1989). ‘The Heliocentric Evolution of Cometary Infrared Spectra: Results for an Organic Grain Model,’ Icarus, in press.Google Scholar
  29. Clark, B.C., Mason, L.W., and Kissel, J. (1987). ‘Systematics of the “CHON” and Other Light-Element Particle Populations in Comet P/Halley,’ Astron. Astrophys., 187, 779–784.ADSGoogle Scholar
  30. Colangeli, L., Schwehm, G., Busoletti, E., Fonti, S., Blanco, A., and Orofina, V. (1989). ‘The Unidentified IR Bands in Laboratory, Interstellar Medium, and in Comets,’ in 22nd ESLAB Conference, Infrared Spectroscopy in Astronomy, ESA SP-290, in press.Google Scholar
  31. Combes, M., et al. (1986). ‘Infrared Sounding of Comet Halley From VEGA 1,’ Nature, 321, 266–268.ADSCrossRefGoogle Scholar
  32. Combes, M., et al. (1988). ‘The 2.5–12 µm Spectrum of Comet Halley From the IKS-VEGA Experiment,’ Icarus, 76, 404–436.ADSCrossRefGoogle Scholar
  33. Crovisier, J. (1984). ‘The Water Molecule in Comets: Fluorescence Mechanisms and Thermodynamics of the Inner Coma,’ Astron. Astrophys., 13, 361–372.ADSGoogle Scholar
  34. Crovisier, J. (1987). ‘Rotational and Vibrational Synthetic Spectra of Linear Parent Molecules in Comets,’ Astron. Astrophys. Suppl., 68, 223–258.ADSGoogle Scholar
  35. Crovisier, J., and Bourlot, J. (1983). ‘Infrared and Microwave Fluorescence of Carbon Monoxide in Comets,’ Astron. Astrophys., 123, 61–66.ADSGoogle Scholar
  36. Crovisier, J., and Encrenaz, Th. (1983). ‘Infrared Fluorescence of Molecules in Comets: The General Synthetic Spectrum,’ Astron. Astrophys., 126, 170–182.ADSGoogle Scholar
  37. Cruikshank, D.P., and Brown, R.H. (1987). ‘Organic Matter on Asteroid 130 Elektra,’ Science, 238, 183–284.ADSCrossRefGoogle Scholar
  38. Danks, A.C., Encrenaz, Th., Bouchet, P., LeBertre, T., and Chalabaev, A. (1987). ‘The Spectrum of Comet P/Halley From 3.0 to 4.0 µm,’ Astron. Astrophys., 184, 329–332.ADSGoogle Scholar
  39. Delsemme, A.H. (1982). ‘Chemical Composition of Cometary Nuclei,’ in L.L. Wilkening (ed.), Comets, University of Arizona Press, Tucson, pp. 85–130.Google Scholar
  40. Despois, D., Crovisier, J., Bockelee-Morvan, D., Schram, J., Forveille, J., and Gerard, E. (1986). ‘Observations of Hydrogen Cyanide in Comet Halley,’ Astron. Astrophys., 160, L11–L12.ADSGoogle Scholar
  41. D’Hendecourt, L.B., Allamandola, L.J., Grim, R.J.A., and Greenberg, J.M. (1986). ‘Time-Dependent Chemistry in Dense Molecular Clouds. II. Ultraviolet Photoprocessing and Infrared Spectroscopy of Grain Mantles,’ Astron. Astrophys., 158, 119–134.ADSGoogle Scholar
  42. Dischler, B., Bubenzer, A., and Kordl, P. (1983). ‘Bonding in Hydrogenated Hard Carbon Studied by Optical Spectroscopy,’ Solid State Comm., 48, 105–108.ADSCrossRefGoogle Scholar
  43. Drapatz, S., Larson, H.P., and Davis, D.S. (1987). ‘Search for Methane in Comet P/Halley,’ Astron. Astrophys., 187, 497–501.ADSGoogle Scholar
  44. Eberhardt, P., et al. (1987). ‘The CO and N2 Abundance in Comet P/Halley,’ Astron. Astrophys., 187, 481–484.ADSGoogle Scholar
  45. Emerich, C., et al. (1987). ‘Temperature and Size of the Nucleus of Comet P/Halley Deduced From IKS Infrared Vega 1 Measurements,’ Astron. Astrophys., 187, 839–842.ADSGoogle Scholar
  46. Encrenaz, Th., Crovisier, M., Combes, M., and Crifo, J.F. (1982). ‘A Theoretical Study of Comet Halley’s Spectrum in the Infrared Range,’ Icarus, 51, 660–664.ADSCrossRefGoogle Scholar
  47. Encrenaz, Th., D’Hendecourt, L., and Puget, J.L. (1988). ‘On the Interpretation of the 3.2–3.5 Micron Emission Feature in the Spectrum of Comet Halley: Abundances in P/Halley and in Interstellar Matter,’ Astron. Astrophys., 207, 162–173.ADSGoogle Scholar
  48. Encrenaz, Th., Puget, J.L., Bibring, J.P., Combes, M., Crovisier, J., Emerich, C., D’Hendecourt, L., and Rocard, F. (1987). ‘On the Interpretation of the 3 µm Emission Feature in the Spectrum of Comet Halley: Abundances in Comet Halley and in Interstellar Matter,’ in Symposium on the Diversity and Similarity of Comets, ESA SP-278, pp. 369–376.Google Scholar
  49. Feldman, P.D. (1982). ‘Ultraviolet Spectroscopy of Comae,’ in L.L. Wilkening (ed.), Comets, University of Arizona Press, Tucson, pp. 461–479.Google Scholar
  50. Feldman, P.D., A’Hearn, M.F., Festou, M.C., McFadden, L.A., Weaver, H.A., and Woods, T.N. (1986). ‘Is CO2 Responsible for the Outbursts of Comet Halley?’, Nature, 324, 433–436.ADSCrossRefGoogle Scholar
  51. Festou, M.C., et al. (1986). ‘IUE Observations of Comet Halley During the Vega and Giotto Encounters,’ Nature, 321, 361–363.ADSCrossRefGoogle Scholar
  52. Gatley, I., Becklin, E.E., Neugebauer, G., and Werner, M.W. (1974). ‘Infrared Observations of Comet Kohoutek (1973f)’, Icarus, 23, 561–565.ADSCrossRefGoogle Scholar
  53. Geiss, J. (1988). ‘Composition in Halley’s Comet: Clues to Origin and History of Cometary Matter,’ in G. Klare (ed.), Reviews in Modern Astronomy, Vol. 1, Springer-Verlag, Berlin.Google Scholar
  54. Giguere, P.T., and Huebner, W.F. (1978). ‘A Model of Cometary Comae I. Gas-Phase Chemistry in One Dimension,’ Astrophys. J., 223, 638–654.ADSCrossRefGoogle Scholar
  55. Greenberg, J.M. (1982). ‘What Are Comets Made of? A Model Based on Interstellar Dust,’ in L.L. Wilkening (ed.), Comets, University of Arizona Press, Tucson, pp. 131–163.Google Scholar
  56. Greenberg, J.M., and Zhao, N. (1988). Letter, Nature, 331, 124.ADSCrossRefGoogle Scholar
  57. Manner, M.S., and Tokunaga, A.T. (1990). ‘Infrared Techniques for Comet Observations,’ in this volume.Google Scholar
  58. Hanner, M.S., et al. (1985). ‘The Dusty Coma of Periodic Comet Churyumov-Gerasimenko (1982 VIII),’ Icarus, 64, 11–19.ADSCrossRefGoogle Scholar
  59. Hanner, M.S., Aitken, D.K. Knacke, R., McCorkle, S., Roche, P.F., and Tokunaga, A.T. (1985). ‘Infrared Spectrophotometry of Comet IRAS-Araki-Alcock (1983d): A Bare Nucleus Revealed?’, Icarus, 62, 97–109.ADSCrossRefGoogle Scholar
  60. Hanner, M.S., Knacke, R.F., Sekanina, Z., and Tokunaga, A.T. (1985). ‘Dark Grains in Comet Crommelin,’ Astron. Astrophys., 152, 177–181.ADSGoogle Scholar
  61. Haser, L. (1957). ‘Distribution d’lntensité Dans la Tête d’une Comète,’ Bull. Acad. Roy. Belgique, Classe des Sciences, 43, 740–750.MathSciNetADSzbMATHGoogle Scholar
  62. Hayatsu, R., Matsuoka, S., Scott, R.G., Studier, M.H., and Anders, E. (1977). ‘Origin of Organic Matter in the Early Solar System — VII. The Organic Polymer in Carbonaceous Chondrites,’ Geochim. Cosmochim. Acta., 41, 1325–1339.ADSCrossRefGoogle Scholar
  63. Hoyle, F., and Wickramasinghe, N.C. (1987). ‘Organic Dust in Comet Halley,’ Nature, 328, 117.ADSCrossRefGoogle Scholar
  64. Huebner, W.F. (1987). ‘First Polymer in Space Identified in Comet Halley,’ Science, 237, 628–630.ADSCrossRefGoogle Scholar
  65. Huebner, W.F., Boice, D.C., and Sharp, C.M. (1987). ‘Polyoxymethylene in Comet Halley,’ Astrophys. J., 320, L49–L52.CrossRefGoogle Scholar
  66. Huebner, W.F., Giguere, P.T., and Slattery, W.L. (1982). ‘Photochemical Processes in the Inner Coma,’ in L.L. Wilkening (ed.), Comets, University of Arizona Press, Tucson, pp. 496–515.Google Scholar
  67. Huebner, W.F., Snyder, L.E., and Buhl, D. (1974). ‘HCN Emission of Comet Kohoutek (1973f),’ Icarus, 23, 580–584.ADSCrossRefGoogle Scholar
  68. Irvine, W., and Knacke, R.F. (1989). ‘The Chemistry of Interstellar Gas and Grains,’ in S.K. Atreya, J.B. Pollack, and M.S. Matthews (eds.), Origin and Evolution of Planetary and Satellite Atmospheres, University of Arizona Press, Tucson, pp. 3–34.Google Scholar
  69. Jessberger, E.K. (1990). ‘Chemical Properties of Cometary Dust,’ in this volume.Google Scholar
  70. Jessberger, E.K., Kissel, J., and Rahe, J. (1989). ‘The Composition of Comets,’ in S.K. Atreya, J.B. Pollack, and M.S. Matthews (eds.), Origin and Evolution of Planetary and Satellite Atmospheres, University of Arizona Press, Tucson, pp. 167–191.Google Scholar
  71. Johnson, T.V., Brown, R.H., and Pollack, J.B. (1987). ‘Uranus Satellites: Densities and Composition,’ J. Geophys. Res., 92,14, 884–894.Google Scholar
  72. Kawara, K., Gregory, B., Yamamoto, T., and Shibai, H. (1989). ‘Infrared Spectroscopic Observation of Methane in Comet P/Halley,’ Astron. Astrophys., 207, 174–181.ADSGoogle Scholar
  73. Keller, H.U., and Lillie, C.F. (1974). ‘The Scale Length of OH and the Production of H and OH in Comet Bennett (1970 II),’ Astron. Astrophys., 34, 187–196.ADSGoogle Scholar
  74. Keller, H.U., et al. (1986). ‘First Halley Multicolor Camera Imaging Results From Giotto,’ Nature, 321, 320–326.ADSCrossRefGoogle Scholar
  75. Kerridge, J.F., and Chang, S. (1985). ‘Survival of Interstellar Matter in Meteorites: Evidence From Carbonaceous Material,’ in D.C. Black and M.S. Matthews (eds.), Protostars and Planets II, University of Arizona Press, Tucson, pp. 738–771.Google Scholar
  76. Kim, S.J., and A’Hearn, M.F. (1989). ‘Sulfur Compounds in Comets,’ Icarus, in press.Google Scholar
  77. Kissel, J., and Krueger, F.R. (1987). ‘The Organic Component in Dust for Comet Halley as Measured by the PUMA Mass Spectrometer on Board Vega 1,’ Nature, 326, 755–760.ADSCrossRefGoogle Scholar
  78. Kissel, J., et al. (1986). ‘Composition of Comet Halley Dust Particles From Vega Observations,’ Nature, 321, 280–282.ADSCrossRefGoogle Scholar
  79. Knacke, R.F. (1989). ‘Comet Dust Connections With Interstellar Dust,’ in L.J. Allamandola and A.G.G.M. Tielens (eds.), D. Reidel Publ. Co., Dordrecht, in press.Google Scholar
  80. Knacke, R.F., and McCorkle, S. (1987). ‘Spectroscopy of the Kleinmann-Low Nebula: Scattering in a Solid Absorption Band,’ Astron. J., 94, 972–976.ADSCrossRefGoogle Scholar
  81. Knacke, R.F., Brooke, T.Y., and Joyce, R.R. (1986). ‘Observations of 3.2–3-6 Micron Emission Features in Comet Halley,’ Astrophys. J., 310, L49–L53.ADSCrossRefGoogle Scholar
  82. Knacke, R.F., Brooke, T.Y., and Joyce, R.R. (1987). ‘The 3.2–3.6 µm Emission Features in Comet P/Halley: Spectral Identifications and Similarities,’ Astron. Astrophys., 187, 625–628.ADSGoogle Scholar
  83. Knacke, R.F., Kim, Y.H., Noll, K.S., and Geballe, T.R. (1988). ‘Search for Interstellar Methane,’ in R.L. Dickman et al. (eds.), Molecular Clouds in the Milky Way and External Galaxies, Springer-Verlag, Berlin, pp. 180–181.CrossRefGoogle Scholar
  84. Koike, C., Hasegawa, H., and Manabe, A. (1980). ‘Extinction Coefficients of Amorphous Carbon Grains From 2100 Å to 340 µm,’ Astrophys. Space Sci., 67, 495–502.ADSCrossRefGoogle Scholar
  85. Korth, A., et al. (1989). ‘Probable Detection of Organic-Dust-Borne Aromatic C3H3 + Ions in the Coma of Comet Halley,’ Nature, 337, 53–55.ADSCrossRefGoogle Scholar
  86. Krankowsky, D., et al. (1986). ‘In Situ Gas and Ion Measurements at Comet Halley,’ Nature, 321, 326–329.ADSCrossRefGoogle Scholar
  87. Krishna Swamy, K.S., Sandford, S.A., Allamandola, L.J., Witteborn, F.C., and Bregman, J.D. (1988). ‘A Multicomponent Model of the Infrared Emission From Comet Halley,’ Icarus, 75, 351–370.ADSCrossRefGoogle Scholar
  88. Larson, H.P., Weaver, H.A., Mumma, M.J., and Drapatz, S. (1989). ‘Airborne Infrared Spectroscopy of Comet Wilson (1986l) and Comparisons With Comet Halley,’ Astrophys. J., 1106–1114.Google Scholar
  89. Leger, A., and d’Hendecourt, L. (1987). ‘Identification of PAHs in Astronomical IR Spectra—Implications,’ in A. Leger et al. (eds.), Polycyclic Aromatic Hydrocarbons and Astrophysics, D. Reidel Publ. Co., Dordrecht, pp. 223–254.CrossRefGoogle Scholar
  90. Leger, A., et al. (eds.) (1987). Polycyclic Aromatic Hydrocarbons and Astrophysics, D. Reidel Publ. Co., Dordrecht.Google Scholar
  91. Lewis, J.S., and Prinn, R.G. (1980). ‘Kinetic Inhibition of CO and N2 Reduction in the Solar Nebula,’ Astrophys. J., 238, 357–364.ADSCrossRefGoogle Scholar
  92. Maas, R.W., Ney, E.P., and Woolf, N.F. (1970). ‘The 10-Micron Emission Peak of Comet Bennett 1969i,’ Astrophys. J., 160, L101–L104.ADSCrossRefGoogle Scholar
  93. Millis, R.L., A’Hearn, M.F., and Campins, H. (1988). ‘An Investigation of the Nucleus and Coma of Comet P/Arend-Rigaux,’ Astrophys. J., 324, 1194–1209.ADSCrossRefGoogle Scholar
  94. Mitchell, D.L., et al. (1987). ‘Evidence for Chain Molecules Enriched in Carbon, Hydrogen and Oxygen in Comet Halley,’ Science, 237, 626–628.ADSCrossRefGoogle Scholar
  95. Moroz, V.I., et al. (1987). ‘Detection of Parent Molecules in Comet P/Halley From the IKS-Vega Experiment,’ Astron. Astrophys., 187, 513–518.ADSGoogle Scholar
  96. Mumma, M.J., and Reuter, D.C. (1989). ‘On the Identification of Formaldehyde in Halley’s Comet,’ preprint.Google Scholar
  97. Mumma, M.J., Weaver, H.A., Larson, H.P., Davis, D.S., and Williams, M. (1986). ‘Detection of Water Vapor in Halley’s Comet,’ Science, 232, 1525–1528.ADSCrossRefGoogle Scholar
  98. Ney, E.P. (1982). ‘Optical and Infrared Observations of Bright Comets in the Range 0.5 urn to 20 µm,’ in L.L. Wilkening (ed.), Comets, University of Arizona Press, Tucson, pp. 323–340.Google Scholar
  99. Oishi, M., Okuda, H., and Wickramasinghe, N.C. (1978). ‘Infrared Observations of Comet West (1975n). II. A Model of the Cometary Dust,’ Publ. Astron. Soc. Japan, 30, 161–171.ADSGoogle Scholar
  100. Prinn, R.G., and Lewis, J.S. (1980). ‘Kinetic Inhibition of CO and N2 Reduction in the Solar Nebula,’ Astrophys. J., 238, 357–364.ADSCrossRefGoogle Scholar
  101. Rouxhet, P.G., Robin, P.L., and Nicaise, G. (1980). ‘Characterization of Kerogens and of Their Evolution by Infrared Spectroscopy,’ in B. Durand (ed.), Kerogen, Editions Technip., Paris, pp. 163–190.Google Scholar
  102. Sagdeev, R.Z., et al. (1986). ‘Television Observations of Comet Halley From Vega Spacecraft,’ Nature, 321, 262–266.ADSCrossRefGoogle Scholar
  103. Sandford, S.A., and Allamandola, L. (1988). ‘The Condensation and Vaporization Behavior of H2O:CO Ices and Implications for Interstellar Grains and Cometary Activity,’ Icarus, 76, 201–204.ADSCrossRefGoogle Scholar
  104. Schloerb, F.P., Kinzel, W.M., Swade, D.A., and Irvine, W.M. (1987). ‘Observations of HCN in Comet P/Halley,’ Astron. Astrophys., 187, 475–480.ADSGoogle Scholar
  105. Scoville, N., Kleinmann, S.G., Hall, D.N.B., and Ridgway, S.T. (1983). ‘The Circumstellar and Nebular Environment of the Becklin-Neugebauer Object: λ = 2-5 Micron Spectroscopy,’ Astrophys. J., 225, 201–224.ADSCrossRefGoogle Scholar
  106. Sellgren, K. (1984). ‘The Near-Infrared Continuum Emission of Visual Reflection Nebulae,’ Astrophys. J., 277, 623–633.ADSCrossRefGoogle Scholar
  107. Smith, R.G., Sellgren, K., and Tokunaga, A.T. (1989). ‘Absorption Features in the 3 Micron Spectra of Protostars,’ Astrophys. J., 344, 413–426.ADSCrossRefGoogle Scholar
  108. Snyder, L.E., Palmer, P., and de Pater, I. (1989). ‘Radio Detection of Formaldehyde Emission From Comet Halley,’ Astron. J., 97, 246–253.ADSCrossRefGoogle Scholar
  109. Swan, P., Walker, R.M., and Wopenka, B. (1987). ‘3.4 µm Absorption in Interplanetary Dust Particles: Evidence of Indigenous Hydrocarbons and a Further Link to Comet Halley,’ Meteoritics, 510–511.Google Scholar
  110. Swings, P., and Page, T.L. (1950). ‘The Spectrum of Comet Bester (1947k),’ Astrophys. J., 111, 530–534.ADSCrossRefGoogle Scholar
  111. Tapia, M., Persi, P., Roth, M., and Ferrari-Toniolo, M. (1990). ‘Three-Micron Spectroscopy of Three Highly Reddened Field Stars,’ Astron. Astrophys., in press.Google Scholar
  112. Tielens, A.G.G.M., and Allamandola, L.J. (1987). ‘Composition, Structure, and Chemistry of Interstellar Dust,’ in D.J. Hollenbach and H.A. Thronson, Jr. (eds.), Interstellar Processes, D. Reidel Publ. Co., Dordrecht, pp. 397–469.CrossRefGoogle Scholar
  113. Tokunaga, A.T., and Brooke, T.Y. (1990). ‘On Testing the Hypothesis via Infrared Spectroscopy That Comets Originated Directly From the Interstellar Medium,’ Icarus, in press.Google Scholar
  114. Ulich, B.L., and Conklin, E.J. (1975). ‘Discovery of CH3CN in Comets,’ Nature, 248, 121–122.ADSCrossRefGoogle Scholar
  115. Walker, R.M. (1988). ‘Comparison of Laboratory Determined Properties of Interplanetary Dust With Those of Comet Halley Particles: What Are Comets Made of?,’ in M. Hanner (ed.), Infrared Observations of Comets Halley and Wilson and Properties of the Grains, NASA Conf. Pub. 3004, pp. 53–63.Google Scholar
  116. Wdowiak, T.J., Flickinger, G.C., and Cronin, J.R. (1988). ‘Insoluble Organic Material of the Orgueil Carbonaceous Chondrite and the Unidentified Infrared Bands,’ Astrophys. J., 328, L75–L79.ADSCrossRefGoogle Scholar
  117. Weaver, H.A., and Mumma, M.J. (1984). ‘Infrared Molecular Emissions From Comets,’ Astrophys. J., 276, 782–797.ADSCrossRefGoogle Scholar
  118. Whipple, F.L. (1989). ‘Comets in the Space Age,’ Astrophys. J., 341, 1–15.ADSCrossRefGoogle Scholar
  119. Wickramasinghe, D.T., and Allen, D.A. (1986). ‘Discovery of Organic Grains in Comet Halley,’ Nature, 324, 44–46.ADSCrossRefGoogle Scholar
  120. Wilkening, L.L. (ed.) (1982). Comets, University of Arizona Press, Tucson.Google Scholar
  121. Woods, T.N., Feldman, P.D., Dymond, K.F., and Sahnow, D.J. (1986). ‘Rocket Ultraviolet Spectroscopy of Comet Halley and Abundance of Carbon Monoxide and Carbon,’ Nature, 324, 436–438.ADSCrossRefGoogle Scholar
  122. Wyckoff, S. (1982). ‘Overview of Comet Observations,’ in L.L. Wilkening (ed.), Comets, University of Arizona Press, Tucson, pp. 3–55.Google Scholar
  123. Yamamoto, T. (1982). ‘Evaluation of Infrared Line Emission From Constituent Molecules of Cometary Nuclei,’ Astron. Astrophys., 109, 326–330.ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • T. Encrenaz
    • 1
  • R. Knacke
    • 2
  1. 1.Observatoire de ParisDESPAMeudonFrance
  2. 2.Astronomy Program, Department of Earth and Space SciencesState University of New YorkStony BrookUSA

Personalised recommendations