Advertisement

Infrared Techniques for Comet Observations

  • Martha S. Hanner
  • Alan T. Tokunaga
Part of the Astrophysics and Space Science Library book series (ASSL, volume 167)

Abstract

The infrared spectral region (1–1000 µm) is important for studies of both molecules and solid grains in comets. Infrared astronomy is in the midst of a technological revolution, with the development of sensitive 2-dimensional arrays leading to infrared cameras and spectrometers with vastly improved sensitivity and resolution. The Halley campaign gave us tantalizing first glimpses of the comet science possible with this new technology, evidenced, for example, by the many new spectral features detected in the infrared. The techniques of photometry, imaging, and spectroscopy are reviewed in this chapter and their status at the time of the Halley observations is described.

Keywords

Standard Star Effective Wavelength Infrared Observation Indium Bump Infrared Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A’Hearn, M.F. (1988). ‘Observations of cometary nuclei,’ Ann. Rev. Earth Planetary Sci. 16, 273–293.ADSCrossRefGoogle Scholar
  2. A’Hearn, M.F., Dwek, E., and Tokunaga, A.T. (1984). ‘Infrared photometry of Comet Bowell and other comets.’ Astrophys. J. 282, 803.ADSCrossRefGoogle Scholar
  3. Aitken, D.K., and Roche, P.F. (1982). ‘8–13 µm spectrophotometry of compact planetary nebulae and emission line objects.’ Mon. Not. R. Astr. Soc. 200, 217.ADSGoogle Scholar
  4. Allen, D.A., and Cragg, T.A. (1983). ‘The AAO JHKL’ photometric standards.’ MNRAS 203, 777–783.ADSGoogle Scholar
  5. Becklin, E.E., and Westphal, J.A. (1966). ‘Infrared Observations of Comet 1965f.’ Astrophys. J. 145, 445.ADSCrossRefGoogle Scholar
  6. Beichman, C., et al. (1985). ‘IRAS Explanatory Supplement,’ Chapter VI.Google Scholar
  7. Blackwell, D.E., Leggett, S.K., Petford, A.D., Mountain, C.M., and Selby, M.J. (1983). ‘Absolute calibration of the infrared flux from Vega at 1.24, 2.20, 3.76, and 4.6 µm by comparison with a standard furnace.’ MNRAS 205, 897–905.ADSGoogle Scholar
  8. Bockelée-Morvan, D., and Crovisier, J. (1989). ‘The nature of the 2.8-µm emission feature in cometary spectra.’ Astron. Astrophys. 216, 278.ADSGoogle Scholar
  9. Booth, A.J., Selby, M. J., Blackwell, D. E., Petford, A. D., and Arribas, S. (1989). ‘Determination of the absolute flux from Vega at 2.25 µm.’ Astron. Astrophys. 218, 167.ADSGoogle Scholar
  10. Bregman, J.D., Campins, H., Witteborn, F.C., Wooden, D.H., Rank, D.M., Allamandola, L.J., Cohen, M., and Tielens, A.G.G.M. (1987). ‘Airborne and groundbased spectrophotometry of comet P/Halley from 5–13 micrometers.’ Astron. Astrophys. 187, 616.ADSGoogle Scholar
  11. Brooke, T.Y., Knacke, R.F., and Joyce, R.R. (1987). ‘The near-infrared polarization and color of comet P/Halley,’ Astron. Astrophys. 187, 621.ADSGoogle Scholar
  12. Campins, H., Joy, M., Harvey, P.M., Lester, D.F., and Ellis, H.B. (1987). ‘Airborne photometry of Comet Halley from 40 to 160 microns.’ Astron. Astrophys. 187, 632.ADSGoogle Scholar
  13. Campins, H., Rieke, G.H., and Lebofsky, M.J. (1985). ‘Absolute calibration of photometry at 1 through 5 µm.’ Astron. J. 90, 896.ADSCrossRefGoogle Scholar
  14. Campins, H., Bregman, J.D., Witteborn, F.C., Wooden, D.H., Rank, D.M., Allamandola, L.J., Cohen, M., and Tielens, A.G.G.M. (1987). ‘Airborne spectrophotometry of comet Halley from 5 to 9 microns.’ In Proc. 20th ESLAB Symp. on the Exploration of Halley’s Comet (B. Battrick, E.J. Rolfe, and R. Reinhard, Eds.), ESA SP-250, Vol. 2, p. 121.Google Scholar
  15. Campins, H., and Tokunaga, A., (1988). ‘Infrared observations of the dust coma.’ In Infrared Observations of Comets Halley and Wilson and Properties of the Grains, NASA Conf. Pub. 3004 (M.S. Hanner, Ed.), p. 1.Google Scholar
  16. Campins, H., Rieke, M. J., and Rieke, G. H. (1989). ‘An infrared color gradient in the inner coma of Comet Halley.’ Icarus 78, 54.ADSCrossRefGoogle Scholar
  17. Campins, H., and Ryan, E.V. (1989). ‘The identification of crystalline olivine in cometary silicates.’ Astrophys. J. 341, 1059.ADSCrossRefGoogle Scholar
  18. Carter, B.S. (1990). ‘Southern JHKL standards.’ MNRAS 242, 1–5.ADSGoogle Scholar
  19. Combes, M., et al. (1986). ‘Infrared sounding of comet Halley from VEGA 1.’ Nature 321, 266.ADSCrossRefGoogle Scholar
  20. Crovisier, J. (1989). ‘Infrared cometary spectroscopy.’ In 22nd ESLAB Symp. on Infrared Spectroscopy in Astronomy, ESA SP-290, in press.Google Scholar
  21. Drapatz, S., Larson, H.P., and Davis, D.S. (1987). ‘Search for methane in comet P/Halley.’ Astron. Astrophys. 187, 497.ADSGoogle Scholar
  22. Dreiling, L.A., and Bell, R.A. (1980). ‘The chemical composition, gravity and temperature of Vega.’ Astrophys. J. 241, 736.ADSCrossRefGoogle Scholar
  23. Elias, J.H., Frogel, J.A., Matthews, K., and Neugebauer, G. (1982). ‘Infrared standard stars.’ Astron. J. 87, 1029.ADSCrossRefGoogle Scholar
  24. Elias, J.H., Frogel, J.A., Hyland, A.R., and Jones, T.J. (1983). ‘Comparison of the Mt. Stromlo/ AAO. and Cal Tech/Tololo infrared photometric systems.’ Astron. J. 88, 1027.ADSCrossRefGoogle Scholar
  25. Engels, D., Sherwood, W.A., Wamsteker, W., and Schultz, G.V. (1981). ‘Infrared observations of southern bright stars.’ Astron. Astrophys. Suppl. Ser. 45, 5.ADSGoogle Scholar
  26. Gehrz, R.D. Grasdalen, G.L., and Hackwell, J. A. (1987). ‘Infrared astronomy.’ In Encyclopedia of Physical Science and Technology 2, 53.Google Scholar
  27. Gehrz, R.D., Hackwell, J.A., and Jones, T.W. (1974). ‘Infrared observations of Be stars from 2.3 to 19.5 microns.’ Astrophys. J. 191, 675.ADSCrossRefGoogle Scholar
  28. Gezari, D.Y., Folz, W.C., Woods, L.A., and Woolridge, J.B. (1988). ‘A 58 × 62 pixel Si:Ga array camera for 5–14 µm astronomical imaging.’ Proc. SPIE. 973, in press.Google Scholar
  29. Gillett, F.C., Dereniak, E.L., and Joyce, R.R. (1977). ‘Detectors for infrared astronomy.’ Opt. Engr. 16, 544.ADSGoogle Scholar
  30. Gillett, F.C., Low, F.J., and Stein, W.A. (1968). ‘Stellar spectra from 2.8–14 microns.’ Astrophys. J. 154, 677.ADSCrossRefGoogle Scholar
  31. Glaccum, W., Moseley, S.H., Campins, H., and Loewenstein, R.F. (1987). ‘Airborne spectrophotometry of P/Halley from 20 to 65 microns.’ Astron Astrophys. 187, 635.ADSGoogle Scholar
  32. Glass, I.S. (1974). ‘JHKL photometry of 145 southern stars.’ Mon. Not. Astr. Soc. S. Africa 33, 53.ADSGoogle Scholar
  33. Grasdalen, G. L., Gehrz, R.D., Hackwell, J.A., and Freedman, R. (1985). ‘20-micron transparency and atmospheric water vapor at the Wyoming infrared observatory.’ Pub. Astron. Soc. Pac. 97, 1013.ADSCrossRefGoogle Scholar
  34. Hackwell, J.A. (1971). ‘Emission spectrum of comet Bennett.’ Observatory 91, 33.ADSGoogle Scholar
  35. Hall, D.N.B., Aikens, R.S., Joyce, R., and McCurnin, T.W., (1975). ‘Johnson noise limited operation of photovoltaic InSb detectors.’ App. Optics 14, 450.ADSCrossRefGoogle Scholar
  36. Hammel, H.B., Telesco, C.M., Campins, H., Decher, R., Storrs, A.D., and Cruikshank, D. P. (1987). ‘Albedo maps of comets P/Halley and P/Giacobini-Zinner.’ Astron. Astrophys. 187, 665.ADSGoogle Scholar
  37. Hanner, M.S. (1984). ‘A comparison of the dust properties in recent periodic comets.’ Adv. Space Res., 4,(9), 189.ADSCrossRefGoogle Scholar
  38. Hanner, M.S., Tokunaga, A.T., Veeder, G.J., and A’Hearn, M.F. (1984). ‘Infrared photometry of the dust in comets.’ Astron. J. 89, 162.ADSCrossRefGoogle Scholar
  39. Hanner, M.S., Kupferman, P.N., Bailey, G., and Zarnecki, J.C. (1987). ‘Infrared imaging with JPL’s linear array camera.’ In Infrared Astronomy with Arrays (C.G. Wynn-Williams and E.E. Becklin, Eds.), Institute for Astronomy, Univ. of Hawaii, Honolulu, p. 205.Google Scholar
  40. Hanner, M.S., Ed. (1988). ‘Infrared observations of Comets Halley and Wilson and properties of the grains,’ NASA Conference Publ. 3004.Google Scholar
  41. Hayward, T.L., and Grasdalen, G.L. (1987). ‘Infrared images of comets. I. P./Giacobini-Zinner (1985e).’ Astron. J. 94, 1339.ADSCrossRefGoogle Scholar
  42. Hayward, T.L., Grasdalen, G.L., and Green, S.F., (1988). ‘An albedo map of P/Halley on 13 March 1986.’ In Infrared Observations of Comets Halley and Wilson and Properties of the Grains, NASA Conf. Pub. 3004 (M.S. Hanner, Ed.), p. 151.Google Scholar
  43. Hayes, D.S. (1985). ‘Stellar absolute fluxes and energy distributions from 0.32 to 4.0 µm.’ In IAU Symp. 111, Calibration of Fundamental Stellar Quantities (D.S. Hayes, L.E. Pasinetti, and A.G. D. Philip, Eds.), Reidel, Dordrecht, p. 225.CrossRefGoogle Scholar
  44. Herter, T., Campins, H., and Gull, G.E. (1987). ‘Airborne spectrophotometry of P/Halley from 16 to 30 microns.’ Astron. Astrophys. 187, 629.ADSGoogle Scholar
  45. Johnson, H.L. (1966). ‘Astronomical measurements in the infrared,’ Ann. Rev. Astron. Ap. 193.Google Scholar
  46. Johnson, H.L. (1965). ‘The absolute calibration of the Arizona photometry,’ Comm. Lunar Plan. Lab 3, 73.ADSGoogle Scholar
  47. Johnson, H.L. (1965). ‘Interstellar extinction in the galaxy,’ Astrophys. J. 141, 923.ADSCrossRefGoogle Scholar
  48. Johnson, H.L., et al. (1966). Comm. Lunar Plan. Lab 4, 99.ADSGoogle Scholar
  49. Jones, T.J., and Hyland, A.R. (1982). ‘Multiaperture JHK photometry of the globular clusters in the Fornax dwarf spheroidal galaxies.’ Mon. Not. Roy. Astr. Soc. 200, 509.ADSGoogle Scholar
  50. Joyce, R. (1989). ‘Availability of KPNO IR spectrometer (CRSP).’ NOAO Newsletter No. 17, p. 22.Google Scholar
  51. King, I. (1952). ‘A note on the concept of effective wavelength.’ Astrophys. J. 115, 580.ADSCrossRefGoogle Scholar
  52. Koornneef, J. (1983). ‘Near infrared photometry I.’ Astron. Astrophys. Suppl. Ser. 51, 489.ADSGoogle Scholar
  53. Koornneef, J. (1983). ‘Near infrared photometry II.’ Astron. Astrophys. 128, 84–93.ADSGoogle Scholar
  54. Krisciunas, K., Sinton, W., Tholen, D., Tokunaga, A., Golisch, W., Griep, D., Kaminski, C., Impey, C., and Christian, C. (1987). ‘Atmospheric extinction and night sky brightness at Mauna Kea.’ Pub. Astron. Soc. Pac. 99, 887.ADSCrossRefGoogle Scholar
  55. Kurucz, R.L. (1979). ‘Model atmospheres for G, F, A, B and O stars’. Ap.J. Suppl. 40, 1.ADSCrossRefGoogle Scholar
  56. Larson, H.P., Weaver, H.A., Mumma, M.J., and Drapatz, S. (1989). ‘Airborne infrared spectroscopy of comet Wilson (1986l) and comparisons with comet Halley.’ Astrophys. J., submitted.Google Scholar
  57. Lester, D.F., Harvey, P.M., and Carr, J. (1988). ‘Properties of the gas and stellar content of the superluminous galaxy NGC 6240.’ Astrophys. J. 329, 641.ADSCrossRefGoogle Scholar
  58. Lockwood, G.W., and Thompson, D.T. (1986). ‘Atmospheric extinction — the ordinary and volcanically induced variations, 1972–1985.’ Astron. J. 92, 976.ADSCrossRefGoogle Scholar
  59. Low, F.J. (1961). ‘Low-temperature germanium bolometer.’ J. Opt. Soc. Am. 51, 1300.ADSCrossRefGoogle Scholar
  60. Low, F.J., and Rieke, G.H. (1974). ‘The instrumentation and techniques of infrared photometry.’ In Methods of Experimental Physics, Vol. 12 (N. Carelton, Ed.), Academic Press, N.Y., pp. 415–452.Google Scholar
  61. Manduca, A., and Bell, R.A. (1979). ‘Atmospheric extinction in the near-infrared.’ Pub. Astron. Soc. Pac. 91, 848.ADSCrossRefGoogle Scholar
  62. Merrill, K.M. (1974). ‘8–13 µm spectrophotometry of comet Kohoutek.’ Icarus 23, 566.ADSCrossRefGoogle Scholar
  63. Moorwood, A.F.M. (1987). ‘IRSPEC: Design, performance and first scientific results.’ In Infrared Astronomy with Arrays (C.G. Wynn-Williams and E.E. Becklin, Eds.), Univ. of Hawaii, Honolulu, p. 379.Google Scholar
  64. Moroz, V.I., et al. (1987). ‘Detection of parent molecules in comet P/Halley from the IKS-Vega experiment.’ Astron. Astrophys. 187, 513.ADSGoogle Scholar
  65. Morrison, D., and Lebofsky, L. (1979). ‘Radiometry of asteriods.’ In Asteroids (T. Gehreis, Ed.), Univ. Arizona Press, Tucson, p. 184.Google Scholar
  66. Mountain, C.M., Leggett, S.K., Selby, M.J., Blackwell, D.E., and Petford, A.D. (1985). ‘Measurement of the absolute flux from Vega at 4.92 µm.’ Astron. Astrophys. 151, 399–402.ADSGoogle Scholar
  67. Mumma, M.J., Weaver, H.A., Larson, H.P., Davis, D.S., and Williams, M. (1986). ‘Detection of water vapor in Halley’s comet.’ Science 232, 1523.ADSCrossRefGoogle Scholar
  68. Mumma, M.J., Blass, W.E., Weaver, H.A., and Larson, H.P. (1988). ‘Measurements of the orthopara ratio and the nuclear spin temperature of water vapor in comets Halley and Wilson (1986l) and implications for their origin and evolution.’ BAAS 20, 826; Proc. Workshop on Formation and Evolution of Planetary Systems, STScI, May 9–11, 1988.ADSGoogle Scholar
  69. Neckel, H., and Labs, D. (1981). ‘Improved data of solar spectral irradiance from 0.33 to 1.25 µm.’ Solar Phys. 74, 231.ADSCrossRefGoogle Scholar
  70. Ney, E.P. (1974). ‘Multiband photometry of comets Kohoutek, Bennett, Bradfield, and Encke.’ Icarus, 23, 551.ADSCrossRefGoogle Scholar
  71. Ney, E.P. (1982). ‘Optical and infrared observations of comets in the range 0.5 µm to 20 µm.’ In Comets (L.L. Wilkening, Ed.), Univ. Arizona Press, Tucson, p. 323.Google Scholar
  72. Rieke, G.H., Lebofsky, M.J., and Low, F.J. (1985). ‘An absolute photometric system at 10 and 20 µm.’ Astron. J. 90, 900.ADSCrossRefGoogle Scholar
  73. Ridgway, S.T., and Hinkle, K.H. (1988). ‘The impact of array detectors on high resolution infrared spectroscopy.’ In The Impact of Very High S/N Spectroscopy on Stellar Physics (G. Cayrel de Strobel and M. Spite, Eds.), p. 61.Google Scholar
  74. Rode, J.P., Blackwell, J.D., Blessinger, M.A., and Vural, K. (1987). ‘SWIR HgCdTe focal plane arrays for astronomy.’ In Infrared Astronomy with Arrays (C.G. Wynn-Williams and E.E. Becklin, Eds.), Institute for Astronomy, Univ. of Hawaii, Honolulu, p. 13.Google Scholar
  75. Schnopper, H.W., and Thompson, R.I. (1974). ‘Fourier spectrometers.’ In Methods of Experimental Physics, Vol. 12, Part A (N. Carleton, Ed.), Academic Press, N.Y., p. 491.Google Scholar
  76. Serkowski, K. (1974). ‘Polarization techniques.’ In Methods of Experimental Physics, 12 (N. Carleton, Ed.) Academic Press, N.Y., p. 361.Google Scholar
  77. Simpson, J.P., Cuzzi, J.N., Erickson, E.F., Strecker, D.W., and Tokunaga, A.T. (1981). ‘Mars: Far-infrared spectra and thermal emission models.’ Icarus 48, 230–245.ADSCrossRefGoogle Scholar
  78. Shure, M., Nagata, T.M., Tokunaga, A.T., Forrest, W.J., Pipher, J.L., and Woodward, C.E. (1989). ‘Ground-based infrared imaging of comet Halley.’ In preparation.Google Scholar
  79. Sinton, W.M., and Tittemore, W.C. (1984). ‘Photometric standard stars for L’ and M filter bands.’ Astron. J. 89, 1366.ADSCrossRefGoogle Scholar
  80. Stacey, G.J., Lugten, J.B., and Genzel, R. (1987). ‘Detection of OH rotational emission from comet P/Halley in the far-infrared.’ Astron. Astrophys. 187, 451.ADSGoogle Scholar
  81. Telesco, C.M., Decher, R., Baugher, C., Campins, H., Mozurkewich, D., Thronson, H.A., Cruikshank, D.P., Hammel, H.B., Larson, S., and Sekanina, Z. (1986). ‘Thermal-infrared and visual imaging of comet Giacobini-Zinner.’ Astrophys. J. Lett. 310, L61.ADSCrossRefGoogle Scholar
  82. Tokunaga, A.T. (1989). ‘Infrared detector arrays and some applications to spectroscopy.’ Ap. Space Sci. 160, 333.ADSCrossRefGoogle Scholar
  83. Tokunaga, A.T. (1986). The NASA Infrared Telescope Facility Photometry Manual.Google Scholar
  84. Tokunaga, A.T. (1984). ‘A reevaluation of the 20 magnitude system.’ Astron. J. 89, 172.ADSCrossRefGoogle Scholar
  85. Tokunaga, A.T., Golisch, W.F., Griep, D.M., Kaminski, C.D., and Hanner, M.S. (1986). ‘The NASA infrared telescope facility Comet Halley monitoring program. I. Preperihelion results.’ Astron. J. 92, 1183.ADSCrossRefGoogle Scholar
  86. Tokunaga, A.T., Smith, R.G., and Irwin, E. (1987). ‘Use of a 32-element Reticon array for 1 to 5 micrometer spectroscopy.’ In Infrared Astronomy with Arrays (C.G. Wynn-Willians and E.E. Becklin, Eds.), Univ. of Hawaii, Hnolulu, p. 367.Google Scholar
  87. Wade, R. (1983). ‘A 1–5 micron cooled grating array spectrometer and Fabry-Perot system for the UKIRT.’ Proc. SPIE 445, 47.ADSCrossRefGoogle Scholar
  88. Walker, R.G., Aumann, H.H., Davies, J., Green, S., De Jong, T., Houck, J.R., and Soifer, B.T. (1984). ‘Observations of comet IRAS-Araki-Alcock 1983d.’ Astrophys. J. 278, L11.ADSCrossRefGoogle Scholar
  89. Wamsteker, W. (1981). ‘Standard stars and calibration for JHKLM photometry,’ Astron. Astrophys. 97, 329.ADSGoogle Scholar
  90. Weaver, H.A. (1989). ‘The volatile composition of comets.’ In Highlights of Astronomy, 8, 387.ADSCrossRefGoogle Scholar
  91. Weaver, H.A., Mumma, M.J., Larson, H.P., and Davis, D.S. (1986). ‘Post-perihelion observations of water in comet Halley.’ Nature 324, 441.ADSCrossRefGoogle Scholar
  92. Witteborn, F.C., and Bregman, J.D. (1984). ‘A cryogenically cooled, multidetector spectrometer for infrared astronomy.’ Proc. SPIE 509, 123.ADSGoogle Scholar
  93. Wolfe, W.L., and Zissis, G.J. (1978). The Infrared Handbook, p. 7–118.Google Scholar
  94. Wright, E.L. (1976). ‘Recalibration of the far-infrared brightness temperatures of the planets.’ Astrophys. J. 210, 250.ADSCrossRefGoogle Scholar
  95. Wyckoff, S. (1982). ‘Overview of comet observations.’ In Comets (L.L. Wilkening, Ed.), Univ. of Arizona Press, Tucson, p. 3.Google Scholar
  96. Wynn-Williams, C.G., and Becklin, E.E., Eds. (1987). Infrared Astronomy with Arrays, Proc. Workshop on Ground-Based Astronomical Observations with Infrared Array Detectors. Institute for Astronomy, Univ. of Hawaii, Honolulu.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • Martha S. Hanner
    • 1
  • Alan T. Tokunaga
    • 2
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Institute for AstronomyUniversity of HawaiiHonoluluUSA

Personalised recommendations