Skip to main content

Debris from Comets: The Evolution of Meteor Streams

  • Chapter
Comets in the Post-Halley Era

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 167))

Abstract

The evolution of meteor streams is controlled basically by: (a) the initial velocities with which the particles were ejected from the parent body; (b) gravitational perturbations by the planets; (c) radiation forces; and (d) collisions. This review focuses mainly on recent numerical modelling dealing with (b) and (a).

Ejection velocities spread the particles around the orbit, closing the ring in a few tens of revolutions. The greater ejection velocities of smaller particles cause more rapid dispersion both around the orbit and in the cross section.

A determination of the effects of gravitational perturbations must take into account the distributed properties of the stream. The stream’s evolution is dependent on the short-term impulse nature of planetary perturbations, as well as on long-term secular effects. The combined effects produce complex stream cross-sections as in the ribbon-like form of the Halley stream (Orionid and η Aquarid showers) or as in the changes in the annual position of peak shower activity shown by the Quadrantids. Perturbations may cause the orbit of a parent body to sweep rapidly across the orbit of the Earth. But the associated particle stream may not be lost as a meteor shower because it tends to become dispersed in a manner that ensures a continuing supply of particles in Earth-crossing orbits. The nodes of the observed meteoroid orbits may show very little motion compared with the rapid motion of the nodes of the orbit of the parent object.

Radiation effects contribute to size separation of particles. Very small particles are blown out of the stream or spiral in toward the sun because of Poynting—Robertson drag. Older meteor streams usually show a predominance of large particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babadzhanov, P.B., and Obrubov, Yu.V. (1980) ‘Evolution of orbits and intersection conditions with the Earth of the Geminid and Quadrantid meteor streams’, in I. Halliday and B.A. Mcintosh (eds.), Solid Particles in the Solar System, D. Reidel Pub., Dordrecht, Holland, 157–162.

    Chapter  Google Scholar 

  • Babadzhanov, P.B., and Obrubov, Yu.V. (1989) ‘Dynamics and spacial shape of short-period meteoroid streams’, in D. McNally (ed.), Highlights of Astronomy, Vol 8, Kluwer Academic Pub., Dordrecht, Holland, 287–293.

    Chapter  Google Scholar 

  • Belkovich, O.I., and Ryabova, G.O. (1987) ‘Some models of the Geminids meteor stream formation’, in R. Roper (ed.), ICSU, Middle Atmosphere Program. Handbook for MAP 25, 344–350.

    Google Scholar 

  • Burns, J.A., Lamy, P.L., and Soter, S. (1979) ‘Radiation forces on small particles in the solar system’, Icarus 40, 1–48.

    Article  ADS  Google Scholar 

  • Carusi, A., Kresák, Ľ, Perozzi, E., and Valsecchi, G.B. (1987) ‘Long-term resonances and orbital evolutions of Halley-type comets’, in Z. Ceplecha and P. Pecina (eds.), Interplanetary Matter, Pub. no. 67, Astron. Inst. Czech. Acad. Sci., 29–32.

    Google Scholar 

  • Carusi, A., Kresák, Ľ., Perozzi, E., and Valsecchi, G.B. (1988) ‘On the past orbital history of comet P/Halley’, Celestial Mechanics 43, 319–322.

    Article  ADS  Google Scholar 

  • Cevolani, G., and Hajduk, A. (1987) ‘Activity of the meteoric complex of comet Halley’, in Z. Ceplecha and P. Pecina (eds.), Interplanetary Matter, Pub. no. 67, Astron. Inst. Czech. Acad. Sci., 179–182.

    Google Scholar 

  • Clifton, K.S. (1973) ‘Television studies of faint meteors’, J. Geophys. Res. 78, 6511–6521.

    Article  ADS  Google Scholar 

  • Clube, S.V.M. (1987) ‘The origin of dust in the Solar System’, Phil. Trans. R. Soc. Lond. A 323, 421–436.

    Article  ADS  Google Scholar 

  • Clube, S.V.M., and Napier, W.M. (1984) ‘The microstructure of terrestrial catastrophism’, Mon. Not. R. Astr. Soc. 211, 953–968.

    ADS  Google Scholar 

  • Cook, A.F. (1973) ‘A working list of meteor streams’, Evolutionary and Physical Properties of Meteoroids, NASA SP-319, 183–191.

    Google Scholar 

  • Drummond, J.D. (1981a) ‘A test of comet and meteor shower associations’, Icarus 45, 545–557.

    Article  ADS  Google Scholar 

  • Drummond, J.D. (1981b) ‘Earth-orbit-approaching comets and their radiants’, Icarus 47, 500–517.

    Article  ADS  Google Scholar 

  • Dohnanyi, J.S. (1970) ‘On the origin and distribution of meteoroids’, J. Geophys. Res. 75, 3468–3493.

    Article  ADS  Google Scholar 

  • Duffy, A.G., Hawkes, R.L., and Jones, J. (1987) ‘The determination of shower meteor parameters from single station observations’, Mon. Not. R. Astr. Soc. 228, 55–75.

    ADS  Google Scholar 

  • Fox, K. (1986) ‘The effects of planetary perturbations on observations of meteor streams’, in C.-I. Lagerkvist, B.A. Lindblad, H. Lundstedt, and H. Rickman (eds.), Asteroids Comets Meteors II, Uppsala University, 521–525.

    Google Scholar 

  • Fox, K., Williams, I.P., and Hughes, D.W. (1982) ‘The evolution of the orbit of the Geminid meteor stream’, Mon. Not. R. Astr. Soc. 199, 313–324.

    ADS  Google Scholar 

  • Fox, K., Williams, I.P., and Hughes, D.W. (1983) ‘The rate profile of the Geminid meteor shower’, Mon. Not. R. Astr. Soc. 205, 1155–1169.

    ADS  Google Scholar 

  • Froeschlé, C., and Scholl, H. (1986) ‘Numerical investigations on a possible gravitational breaking of the Quadrantid meteor stream’, in C.-I. Lagerkvist, B.A. Lindblad, H. Lundstedt, and H. Rickman (eds.), Asteroids Comets Meteors II, Uppsala University, 555–558.

    Google Scholar 

  • Froeschle, C., and Scholl, H. (1987) ‘Resonance intermittance causes the gravitational splitting of meteor streams’, in Z. Ceplecha and P. Pecina (eds.), Interplanetary Matter, Pub. no. 67, Astron. Inst. Czech. Acad. Sci., 151–155.

    Google Scholar 

  • Grün, E., Zook, H.A., Fechtig, H., and Giese, R.H. (1985) ‘Collisional balance of the meteoritic complex’, Icarus 62, 244–272.

    Article  ADS  Google Scholar 

  • Gustafson, B.A.S., and Misconi, N.Y. (1987) ‘Interplanetary dust dynamics. II Poynting—Robertson drag and planetary perturbations on cometary dust’, Icarus 72, 568–581.

    Article  ADS  Google Scholar 

  • Hajduk, A. (1980) ‘The core of the meteor stream associated with comet Halley’, in I. Halliday and B.A. Mcintosh (eds.), Solid Particles in the Solar System, D. Reidel Pub., Dordrecht, Holland, 149–152.

    Chapter  Google Scholar 

  • Hajduk, A. (1982) ‘The total mass and structure of the meteor stream associated with comet Halley’, in W. Fricke and G. Teleki (eds.), Sun and Planetary Systems, D. Reidel Pub., Dordrecht, Holland, 335–336.

    Chapter  Google Scholar 

  • Hajduk, A. (1987) ‘Meteoroids from comet Halley. The comet’s mass production and age’, Astron. Astrophys. 187, 925–927.

    ADS  Google Scholar 

  • Hajduk, A., and Kapišinský, I. (1987) ‘The evolution and mass distribution of cometary particles’, ESA SP-278, 441–444.

    Google Scholar 

  • Hajduk, A., Mcintosh, B.A., and Šimek, M. (1974) ‘The Geminid meteor stream’, Bull. Astron. Inst. Czech. 25, 305–313.

    ADS  Google Scholar 

  • Halliday, I. (1988) ‘Geminid fireballs and the peculiar asteroid 3200 Phaethon’, Icarus 76, 279–294.

    Article  ADS  Google Scholar 

  • Hamid, S.E., and Youssef, M.N. (1963) ‘A short note on the origin and age of the Quadrantids’, Smithsonian Contr. to Astrophys. 7, 309–311.

    ADS  Google Scholar 

  • Hartmann, W.K., Tholen, D.J., and Cruikshank, D.P. (1987) ‘The relationship of active comets, “extinct” comets, and dark asteroids’, Icarus 69, 33–50.

    Article  ADS  Google Scholar 

  • Hasegawa, I. (1979) ‘Orbits of ancient and medieval comets’ Pub. Astron. Soc. Japan 31, 257–270.

    ADS  Google Scholar 

  • Hawkes, R.L., and Jones, J. (1975) ‘Television observations of faint meteors—I. Mass distribution and diurnal rate variation’, Mon. Not. R. Astr. Soc. 170, 363–377.

    ADS  Google Scholar 

  • Hawkins, G.S., and Southworth, R.B. (1958) ‘The regression of the node of the Quadrantids’, Smithsonian Contr. to Astrophys. 3, 1.

    Article  ADS  Google Scholar 

  • Herschel, A.S. (1875) Report on Meteors to the British Association.

    Google Scholar 

  • Hindley, K.B. (1970) ‘Meteor notes’, J. Brit. Astron. Assn. 80, 476–486.

    ADS  Google Scholar 

  • Hughes, D.W. (1974) ‘Cosmic dust influx into the upper atmosphere during the major meteor showers’, Space Res. 14, 709–713.

    Google Scholar 

  • Hughes, D.W., and McBride, N.M. (1989) ‘The mass of meteoroid streams’, Mon. Not. R. Astr. Soc, 240, 73–79.

    ADS  Google Scholar 

  • Hughes, D.W., Williams, I.P., and Fox, K. (1981) ‘The mass segregation and nodal regression of the Quadrantid meteor stream’, Mon. Not. R. Astr. Soc. 195, 625–637.

    ADS  Google Scholar 

  • Hunt, J., Fox, K., and Williams, I.P. (1986) ‘Asteroidal origin for the Geminid meteor stream’, in C.-I. Lagerkvist, B.A. Lindblad, H. Lundstedt, and H. Rickman (eds.), Asteroids Comets Meteors II, Uppsala University, 549–553.

    Google Scholar 

  • Imoto, S., and Hasegawa, I. (1958) ‘Historical records of meteor showers in China, Korea and Japan’, Smithsonian Contrib. Astrophys. 2, 131–144.

    ADS  Google Scholar 

  • Isamutdinov, Sh.O., and Chebotarev, R.P. (1987) ‘Structural peculiarities of the Quadrantid meteor shower’, In R. Roper (ed.), ICSU, Middle Atmosphere Program. Handbook for MAP 25, 351–355.

    Google Scholar 

  • Jacchia, L.G., Verniani, F., and Briggs, R.E. (1967) ‘An analysis of the atmospheric trajectories of 413 precisely reduced photographic meteors’, Smithson. Contr. Astrophys. 10, 1–139.

    Article  ADS  Google Scholar 

  • Jones, J. (1985) ‘The structure of the Geminid meteor stream—I. The effect of planetary perturbations’, Mon. Not. R. Astr. Soc. 217, 523–532.

    ADS  Google Scholar 

  • Jones, J., and Hawkes, R.L. (1986) ‘The structure of the Geminid meteor stream—II. The combined action of the cometary ejection process and gravitational perturbations’, Mon. Not. R. Astr. Soc. 223, 479–486.

    ADS  Google Scholar 

  • Jones, J., and Morton, J.D. (1982) ‘High-resolution radar studies of the Geminid meteor shower’, Mon. Not. R. Astr. Soc. 200, 281–291.

    ADS  Google Scholar 

  • Jones, J., Mcintosh, B.A., and Hawkes, R.L. (1989) ‘The age of the Orionid meteor shower’, Mon. Not. R. Astr. Soc, in press.

    Google Scholar 

  • Kaiser, T.R., Poole, L.M.G., and Webster, A.R. (1966) ‘Radio-echo observations of the major night-time meteor streams. I. Perseids’, Mon. Not. R. Astr. Soc. 132, 225–237.

    ADS  Google Scholar 

  • Kresák, Ľ. (1968) ‘Structure and evolution of meteor streams’, in L. Kresák and P.M. Millman (eds.), Physics and Dynamics of Meteors, D. Reidel Pub., Dordrecht, Holland, 391–403.

    Google Scholar 

  • Kresák, Ľ. (1976) ‘Orbital evolution of the dust streams released from comets’, Bull. Astron. Inst. Czech. 27, 35–46.

    ADS  Google Scholar 

  • Kresák, Ľ. (1978) ‘The Tunguska object: A fragment of Comet Enke?’, Bull. Astron. Inst. Czech. 29, 129–134.

    ADS  Google Scholar 

  • Kresák, Ľ. (1982) ‘On the reality of comet groups and pairs’, Bull. Astron. Inst. Czech. 33, 150–160.

    ADS  Google Scholar 

  • Kresáková, M. (1974) ‘Meteors of periodic comet Mellish and the Geminids’, Bull. Astron. Inst. Czech. 25, 20–33.

    ADS  Google Scholar 

  • Kronk, G.W. (1988) METEOR SHOWERS: A Descriptive Catalog. Enslow Publishers, Hillside, N.J.

    Google Scholar 

  • Lamy, Ph., and McDonnell, J.A.M. (1990) ‘Physical properties of cometary dust deduced from impact and optical measurements’, this colloquium.

    Google Scholar 

  • Levin, B.Yu., Simonenko, A.N., and Sherbaum, L.M. (1972) ‘Deformation of a meteor stream caused by an approach to Jupiter’, in G.A. Chebotarev, and E.I. Kazamirchak-Polonskaya (eds.), The Motion, Evolution of Orbits and Origin of Comets, D. Reidel Pub., Dordrecht, Holland, 455–461.

    Google Scholar 

  • Lindblad, B.A. (1986) ‘Structure and activity of the Perseid meteor stream from visual observations 1953–81’, in C.-I. Lagerkvist, B.A. Lindblad, H. Lundstedt, and H. Rickman (eds.), Asteroids Comets Meteors II, Uppsala University, 531–535.

    Google Scholar 

  • Lovell, A.C.B. (1954) Meteor Astronomy, Oxford University Press.

    Google Scholar 

  • McCrosky, R.E. (1975) ‘Cometary debris’, in The Dusty Universe, Smithsonian Astrophys. Obs., 169–184.

    Google Scholar 

  • Mcintosh, B.A. (1973) ‘Origin and evolution of recent Leonid meteor showers’, Evolutionary and Physical Properties of Meteoroids, NASA SP-319, 193–198.

    Google Scholar 

  • Mcintosh, B.A. (1990) ‘Comet P/Machholz and the Quadrantid meteor stream’, Icarus, in press.

    Google Scholar 

  • Mcintosh, B.A., and Hajduk, A. (1983) ‘Comet Halley meteor stream: A new model’, Mon. Not. R. Astr. Soc. 205, 931–943.

    ADS  Google Scholar 

  • Mcintosh, B.A., and Šimek, M. (1980) ‘Geminid meteor stream: Structure from 20 years of radar observations’, Bull. Astron. Inst. Czech. 31, 39–50.

    ADS  Google Scholar 

  • Mcintosh, B.A., and Šimek, M. (1984) ‘Quadrantid meteor shower: A quarter century of radar observations’, Bull. Astron. Inst. Czech. 35, 14–28.

    ADS  Google Scholar 

  • Mcintosh, B.A., and Jones, J. (1988) ‘The Halley comet meteor stream: Numerical modelling of its dynamic evolution’, Mon. Not. R. Astr. Soc. 235, 673–693.

    ADS  Google Scholar 

  • McKinley, D.W.R. (1961) Meteor Science and Engineering, McGraw-Hill, N.Y.

    Google Scholar 

  • Millman, P.M., and Mcintosh, B.A. (1964) ‘Meteor radar statistics I’, Can. J. Phys. 42, 1730–1742.

    Article  ADS  Google Scholar 

  • Morton, J.D., and Jones, J. (1982) ‘A method for imaging radio meteor radiant distributions’, Mon. Not. R. Astr. Soc. 198, 737–746.

    ADS  Google Scholar 

  • Murray, C.D. (1982) ‘Nodal regression of the Quadrantid meteor stream: An analytic approach’, Icarus 49, 125–134.

    Article  ADS  Google Scholar 

  • Murray, C.D., Hughes, D.W., and Williams, I.P. (1980) ‘The effect of orbital evolution on the influx of Quadrantid meteoroids’, Mon. Not. R. Astr. Soc. 190, 733–741.

    ADS  Google Scholar 

  • Ohtsuka, K. (1988) ‘Monocerotid meteors and periodic comet Mellish’, The Heavens 69, 199–209.

    ADS  Google Scholar 

  • Olmstead, D. (1834) ‘On the meteors of the 13th November, 1833’, American J. of Sci. Arts 26, 132–174.

    Google Scholar 

  • Olsson-Steel, D. (1987a) ‘The dispersal of meteoroid streams by radiative effects’, in Z. Ceplecha and P. Pecina (eds.), Interplanetary Matter, Pub. no. 67, Astron. Inst. Czech. Acad. Sci., 157–161.

    Google Scholar 

  • Olsson-Steel, D. (1987b) ‘The dispersal of the Geminid meteor stream by radiative effects’, Mon. Not. R. Astr. Soc. 226, 1–17.

    ADS  Google Scholar 

  • Olsson-Steel, D. (1988) ‘Identification of meteoroid streams from Apollo asteroids in the Adelaide radar orbit survey’, Icarus 75, 64–96.

    Article  ADS  Google Scholar 

  • Öpik, E.J. (1951) ‘Collision probabilities with the planets and the distribution of interplanetary matter’, Proc. Roy. Ir. Acad. 54, 165–199.

    MATH  Google Scholar 

  • Plavcová, Z. (1962) ‘Radio-echo observations of the Geminid meteor shower in 1959’, Bull. Astron. Inst. Czech. 13, 176–178.

    ADS  Google Scholar 

  • Plavec, M. (1950) ‘The Geminid meteor shower’, Nature 165, 362–363.

    Article  ADS  Google Scholar 

  • Poole, L.M.G., and Roux, D.G. (1989) ‘Meteor radiant mapping with an all-sky radar’, Mon. Not. R. Astr. Soc. 236, 645–652.

    ADS  Google Scholar 

  • Porter, J.G. (1952) Comets and Meteor Streams, Chapman & Hall, London, 79.

    Google Scholar 

  • Porubčan, V., and Štohl, J. (1987) ‘The meteor complex of P/Encke’, in Z. Ceplecha and P. Pecina (eds.), Interplanetary Matter, Pub. no. 67, Astron. Inst. Czech. Acad. Sci., 167–171.

    Google Scholar 

  • Sekanina, Z. (1976) ‘Statistical model of meteor streams. IV. A study of radio streams from the synoptic year’, Icarus 27, 265–321.

    Article  ADS  Google Scholar 

  • Sekanina, Z. (1983) ‘The Tunguska event: No cometary signature in evidence’, Astron. J. 88, 1382–1414.

    Article  ADS  Google Scholar 

  • Šimek, M. (1987) ‘Dynamics and evolution of the structure of five meteor streams’, Bull. Astron. Inst. Czech. 38, 80–91.

    ADS  Google Scholar 

  • Šimek, M., and Mcintosh, B.A. (1986) ‘Perseid meteor stream: Mean flux curve from radar observations’, Bull. Astron. Inst. Czech. 37, 146–155.

    ADS  Google Scholar 

  • Šimek, M., and Mcintosh, B.A. (1989) ‘Geminid meteor stream: Activity as a function of particle size’, Bull. Astron. Inst. Czech., in press.

    Google Scholar 

  • Southworth, R.B., and Hawkins, G.S. (1963) ‘Statistics of meteor streams’, Smithsonian Contr. to As trophys. 7, 261–285.

    ADS  Google Scholar 

  • Štohl, J. (1986) ‘The distribution of sporadic meteor radiants and orbits’, in C.-I. Lagerkvist, B.A. Lindblad, H. Lundstedt, and H. Rickman (eds.), Asteroids Comets Meteors II, Uppsala University, 565–574.

    Google Scholar 

  • Štohl, J., and Porubčan, V. (1978) ‘Orionid meteor shower: Activity and magnitude distribution’, Contr. Astr. Obs. Skalnaté Plesso 10, 39–50.

    Google Scholar 

  • Voshchinnikov, N.V., and Il’in, V.B. (1983) ‘Radiation pressure on aspherical grains, compared with Poynting—Robertson effect’, Sov. Astron. Lett. 9, 101–103.

    ADS  Google Scholar 

  • Wetherill, G.W. (1988) ‘Where do the Apollo objects come from’, Icarus 76, 1–18.

    Article  ADS  Google Scholar 

  • Whipple, F.L. (1940) ‘Photographic meteor studies. III. The Taurid shower’, Proc. Amer. Phil. Soc. 15, 711–745.

    Google Scholar 

  • Whipple, F.L. (1951) ‘A comet model. II. Physical relations for comets and meteors’, Astrophys. J. 113, 464–474

    Article  ADS  Google Scholar 

  • Whipple, F.L. (1967) ‘On maintaining the meteor complex’, in J. Weinberg (ed.), The Zodiacal Light and the Interplanetary Medium, NASA SP-150, 409–426.

    Google Scholar 

  • Whipple, F.L. (1987) ‘The cometary nucleus: Current concepts’, Astron. Astrophys. 187, 852–858.

    ADS  Google Scholar 

  • Whipple, F.L., and Hamid, S.E. (1952) ‘On the origin of the Taurid meteor stream’, Helwan Obs. Bulletin, No. 41, 1–30.

    Google Scholar 

  • Williams, I.P., Murray, C.D., and Hughes, D.W. (1979) ‘The long-term orbital evolution of the Quadrantid meteor stream’, Hon. Not. R. Astr. Soc. 189, 483–492.

    ADS  Google Scholar 

  • Wyatt, S.P., Jr., and Whipple, F.L. (1950) ‘The Poynting-Robertson effect on meteor orbits’, Astrophysical J. 111, 134–141.

    Article  ADS  Google Scholar 

  • Yabushita, S. (1972) ‘The dependence on inclination of the planetary perturbations of the orbits of long-period comets’, Astron. Astrophys. 20, 205–214.

    ADS  Google Scholar 

  • Yeomans, D.K. (1981) ‘Comet Tempel-Tuttle and the Leonid meteors’, Icarus 47, 492–499.

    Article  ADS  Google Scholar 

  • Yeomans, D.K. (1986) ‘Physical interpretations from the motions of comet Halley and Giacobini-Zinner”, in Proc. 20th ESLAB Symposium on the Exploration of Ealley’s Comet, ESA SP-250, 419–425.

    Google Scholar 

  • Yeomans, D.K., and Kiang, T. (1981) ‘The long-term motion of comet Halley’, Mon. Not. R. Astr. Soc. 197, 633–646.

    ADS  Google Scholar 

  • Zhuang, T.-S. (1977) ‘Ancient Chinese records of meteor showers’, Chinese Astronomy 1, 197–220.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mcintosh, B.A. (1991). Debris from Comets: The Evolution of Meteor Streams. In: Newburn, R.L., Neugebauer, M., Rahe, J. (eds) Comets in the Post-Halley Era. Astrophysics and Space Science Library, vol 167. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3378-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3378-4_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5494-2

  • Online ISBN: 978-94-011-3378-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics