Noble Gases in Terrestrial Planets: Evidence for Cometary Impacts?

  • Tobias Owen
  • Akiva Bar-Nun
  • Idit Kleinfeld
Part of the Astrophysics and Space Science Library book series (ASSL, volume 167)


The possible role of comets in bringing volatiles to the inner planets is investigated by means of laboratory studies of the ability of ice to trap gases at low temperatures. The pattern of the heavy noble gases formed in the atmosphere of Venus can be explained by the impact of a planetesimal composed of ices formed in the range of 20 to 30 K. The noble gas patterns on Mars and Earth are less explicable by cometary bombardment alone.


Solar Wind Enrichment Factor Terrestrial Planet Solar Nebula Lunar Soil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anders, E., and Grevesse, N. (1989). ‘Abundances of the elements: Meteoritic and solar.’ Geochim. et Cosmochim. Acta 53, 197–214.ADSCrossRefGoogle Scholar
  2. Anders, E., and Owen, T. (1977). ‘Origin and abundances of volatiles on the Earth and Mars.’ Science 198, 453–465.ADSCrossRefGoogle Scholar
  3. Bar-Nun, A., and Kleinfeld, I. (1989). ‘On the temperature and composition in the region of comet formation.’ Icarus 80, 243–253.ADSCrossRefGoogle Scholar
  4. Bar-Nun, A., Kleinfeld, I., and Kochavi, E. (1988). ‘Trapping of gas mixtures by amorphous water ice.’ Phys. Rev. B. 38, 7749–7754.ADSCrossRefGoogle Scholar
  5. Cameron, A.G.W. (1983). ‘Origin of the atmospheres of the terrestrial planets.’ Icarus 56, 195–201.ADSCrossRefGoogle Scholar
  6. Chyba, C. (1987). ‘The cometary contribution to the oceans of primitive Earth.’ Nature 330, 632–635.ADSCrossRefGoogle Scholar
  7. Donahue, T.M. (1986). ‘Fractionation of noble gases by thermal escape from accreting planetesimals.’ Icarus 66, 195–212.ADSCrossRefGoogle Scholar
  8. Donahue, T.M., and Pollack, J.B. (1983). ‘Origin and evolution of the atmosphere of Venus.’ In Venus, D.M. Hunten, L. Colin, T.M. Donahue, and V.I. Moroz (eds.), University of Arizona Press, Tucson, pp. 1003–1036.Google Scholar
  9. Geiss, J. (1987). ‘Composition measurements and the history of cometary matter.’ Astron. Astrophys. 187, 859–866.ADSGoogle Scholar
  10. Hunten, D.M., Pepin, R.O., and Walker, J.C.G. (1987). ‘Mass fractionation in hydrodynamic escape.’ Icarus 69, 532–549.ADSCrossRefGoogle Scholar
  11. Hunten, D.M., Pepin, R.O., and Owen, T. (1988). ‘Planetary atmospheres.’ In Meteorites and the Early Solar System, J.F. Kerridge and M.S. Matthews (eds.), University of Arizona Press, Tucson, pp. 565–594.Google Scholar
  12. Istomin, V.G., Grechnev, K.V., and Kochnev, J.V.A. (1982). ‘Preliminary results of mass-spectrometric measurements on board the Venera 13 and 14 probes.’ Pism Astron. Zh. 8, 391–398.ADSGoogle Scholar
  13. Laufer, D., Kochavi, E., and Bar-Nun, A. (1987). ‘Structure and dynamics of amorphous water ice.’ Phys. Rev B. 36, 9219–9227.ADSCrossRefGoogle Scholar
  14. Lewis, J.S. (1970). ‘Venus: Atmospheric and lithospheric composition.’ Earth Planet. Sci. Lett. 10, 73–80.ADSCrossRefGoogle Scholar
  15. Lewis, J.S. (1974). ‘The temperature gradient in the solar nebula.’ Science 186, 440–443.ADSCrossRefGoogle Scholar
  16. Melosh, J., and Vickery, A. (1989). ‘Impact erosion of the primordial Martian atmosphere.’ Nature 338, 487–489.ADSCrossRefGoogle Scholar
  17. Oro, J. (1961). ‘Comets and the formation of biochemical compounds on the primitive Earth.’ Nature 190, 389–390.ADSCrossRefGoogle Scholar
  18. Owen, T. (1982). ‘The composition and origin of Titan’s atmosphere.’ Planet. Space Sci. 30, 833–838.ADSCrossRefGoogle Scholar
  19. Owen, T. (1985). ‘The atmospheres of icy bodies.’ In Ices in the Solar System, J. Klinger, D. Benest, A. Dollfus, and R. Smoluchowski (eds.), D. Reidel Publishing Co., Dordrecht, pp. 731–740.CrossRefGoogle Scholar
  20. Sill, G., and Wilkening, L. (1978). ‘Ice clathrate as a possible source of the atmospheres of the terrestrial planets.’ Icarus 33, 13–22.ADSCrossRefGoogle Scholar
  21. Wetherill, G.W. (1981). ‘Solar wind origin of 36Ar on Venus.’ Icarus 46, 70–80.ADSCrossRefGoogle Scholar
  22. Wieler, R., Etique, Ph., Signer, P., and Poupean, G. (1983). ‘Decrease of the solar flare/solar wind flux ratio on the past several aeons deduced from solar neon and tracks in lunar soil plagioclases.’ J. Geophys. Res. 88 Supp., A713-A724.Google Scholar
  23. Wiens, R.C., Becker, R.H., and Pepin, R.O. (1986). ‘The case for Martian origin of the shergottites II. Trapped and indigenous gas components in EETA 79001 glass.’ Earth Planet. Sci. Lett. 77, 149–158.ADSCrossRefGoogle Scholar
  24. Zahnle, K.J., Kasting, J.F., and Pollack, J.B. (1990). ‘Mass fractionation of noble gases in diffusion-limited hydrodynamic hydrogen escape.’ Icarus 84, 502–527.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • Tobias Owen
    • 1
  • Akiva Bar-Nun
    • 2
  • Idit Kleinfeld
    • 2
  1. 1.Institute for AstronomyUniversity of HawaiiHonoluluUSA
  2. 2.Department of Geophysics and Planetary SciencesTel Aviv UniversityTel AvivIsrael

Personalised recommendations