Chemical Theories on the Origin of Comets

  • Tetsuo Yamamoto
Part of the Astrophysics and Space Science Library book series (ASSL, volume 167)


Firstly, observational data available at present to infer physical conditions of the formation environment of cometary matter are briefly surveyed. These include the chemical and isotopic composition of cometary matter, and the nuclear spin temperature derived from the ortho/para abundance ratio of H2O molecules. Secondly, theories on the origin of comets—theories based upon the chemical composition of the volatile component of cometary matter—are reviewed. The theories are classified into two types, distinguished by whether cometary volatiles originate as solar nebula condensates or as the sublimation residue of interstellar ices. Observational items helpful to test the theories are pointed out. Thirdly, discussion is given on the physical properties of ices relevant to the chemical theory of the origin of comets.


Solar Nebula Cometary Nucleus Interstellar Cloud Chemical Theory Oort Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, M., Delitsky, M., Huntress, W., Yung, Y., Ip, W.-H., Schwenn, R., Rosenbauer, H., Shelley, E., Balsiger, H., and Geiss, J. (1987). ‘Evidence for methane and ammonia in the coma of comet P/Halley,’ Astron. Astrophys. 187, 502–512.ADSGoogle Scholar
  2. Balsiger, H., Altweg, K., Bühler, F. Geiss, J., Ghielmetti, A.G., Goldstein, B.E., Goldstein, R., Huntress, W.T., Ip, W.-H., Lazarus, A.J., Meier, A., Neugebauer, M., Rettenmund, U., Rosenbauer, H., Schwenn, R., Sharp, R.D., Shelley, E.G., Ungstrup, E., and Young, D.T. (1986). ‘Ion composition and dynamics at comet Halley,’ Nature 321, 330–334.ADSCrossRefGoogle Scholar
  3. Bar-Nun, A., Herman, G., Laufer, D., and Rappaport, M.L. (1985). ‘Trapping and release of gases by water and implications for icy bodies,’ Icarus 63, 317–332.ADSCrossRefGoogle Scholar
  4. Bar-Nun, A., Dror, J., Kochavi, E., and Laufer, D. (1987). ‘Amorphous ice and its ability to trap gases,’ Phys. Rev. B35, 2427–2435.ADSGoogle Scholar
  5. Bertie, J.E., and Devlin, J.P. (1983). ‘Infrared spectroscopic proof of the formation of the structure I hydrate of oxirane from annealed low-temperature condensate,’ J. Chem. Phys. 78, 6340–6341.ADSCrossRefGoogle Scholar
  6. Cameron, A.G.W. (1978). ‘Physics of the primitive solar accretion disk,’ Moon and Planets 18, 5–40.ADSCrossRefGoogle Scholar
  7. Combes, M., Moroz, V.I., Crovisier, J., Encrenaz, T., Bibring, J.-P., Grigoriev, A.V., Sanko, N.F., Coron, N., Crifo, J.F., Gispert, R., Bockelée-Morvan, D., Nikolsky, Yu.V., Krasnopolsky, V.A., Owen, T., Emerich, C., Lamarre, J.M., and Rocard, F. (1988). ‘The 2.5 — 12µm spectrum of comet Halley from the IKS-VEGA experiment,’ Icarus 76, 404–436.ADSCrossRefGoogle Scholar
  8. Consani, K., and Pimentel, G.C. (1987). ‘Infrared spectra of the clathrate hydrates of acetylene and of acetylene/acetone,’ J. Phys. Chem. 91, 289–293.CrossRefGoogle Scholar
  9. d’Hendecourt, L.B., Allamandola, L.J., and Greenberg, J.M. (1985). ‘Time dependent chemistry in dense molecular clouds I. Grain surface reactions, gas/grain interactions and infrared spectroscopy,’ Astron. Astrophys. 152, 130–150.ADSGoogle Scholar
  10. Donn, B. (1990). ‘The accumulation and structure of comets,’ in this volume.Google Scholar
  11. Draine, B.T., and Salpeter, E.E. (1977). ‘Time-dependent nucleation theory,’ J. Chem. Phys. 67, 2230–2235.ADSCrossRefGoogle Scholar
  12. Eberhardt, P., Krankowski, D., Schulte, W., Dolder, U., Lammerzahl, P., Berthelier, J.J., Woweries, J., Stubbemann, U., Hodges, R.R., Hoffman, J.H., and Illiano, J.M. (1987). ‘The CO and N2 abundance in comet P/Halley,’ Astron. Astrophys. 187, 481–484.ADSGoogle Scholar
  13. Engel, S., Lunine, J.I., and Lewis, J.S. (1990). ‘Solar nebula origin for volatiles in Halley’s comet,’ preprint, Icarus, in press.Google Scholar
  14. Fegley, B., Jr., and Prinn, R.G. (1989). ‘Solar nebula chemistry: Implications for volatiles in the solar nebula,’ The Formation and Evolution of Planetary Systems, H.A. Weaver, and L. Danley (eds.), Cambridge University Press, Cambridge, pp. 171–211.Google Scholar
  15. Festou, M.C., Feldman, P.D., A’Hearn, M.F., Arpigny, C., Cosmovici, C.B., Danks, A.C., McFadden, L.A., Gilmozzi, R., Patriarchi, P., Tozzi, G.P., Wallis, M.K., and Weaver, H.A. (1986). ‘IUE observations of comet Halley during the Vega and Giotto encounters,’ Nature 321, 361–363.ADSCrossRefGoogle Scholar
  16. Greenberg, J.M. (1982). ‘What are comets made of? A model based on interstellar dust,’ Comets, L.L. Wilkening (ed.), University of Arizona Press, Tucson, pp. 131–163.Google Scholar
  17. Grim, R.J.A., and Greenberg, J.M. (1987). ‘Photoprocessing of H2S in interstellar grain mantles as an explanation for S2 in comets,’ Astron. Astrophys. 181, 155–168.ADSGoogle Scholar
  18. Hayashi, C. (1981). ‘Structure of the solar nebula, growth and decay of magnetic fields and effect of magnetic and turbulent viscosities on the nebula,’ Suppl. Prog. Theor. Phys. No. 70, 35–53.ADSCrossRefGoogle Scholar
  19. Huebner, W.F., Boyce, D.C., and Sharp, C.M. (1987). ‘Polyoxymethylene in Comet Halley,’ Astrophys. J. 320, L149–L152.ADSCrossRefGoogle Scholar
  20. Irvine, W.M. (1990). ‘Cold, dark interstellar clouds: Can gas-phase reactions explain the observations?’, Chemistry and Spectroscopy of Interstellar Molecules, N. Kaifu (ed.), University of Tokyo Press, in press.Google Scholar
  21. Jessburger, E. (1990). ‘Chemical properties of cometary dust,’ in this volume.Google Scholar
  22. Kawara, K., Gregory, B., Yamamoto, T., and Shibai, H. (1988). ‘Infrared spectroscopic observation of methane in comet P/Halley,’ Astron. Astrophys. 207, 174–181.ADSGoogle Scholar
  23. Krankowski, D., Lämmerzahl, P., Herrwerth, I., Woweries, J., Eberhardt, P., Dolder, U., Herrmann, U., Schulte, W., Berthelier, J.J., Illiano, J.M., Hodges, R.R., and Hoffman, J.H. (1986). ‘In situ gas and ion measurements at comet Halley,’ Nature 321, 326–329.ADSCrossRefGoogle Scholar
  24. Klinger, J. (1990). ‘Physical properties of frozen volatiles—Their relevance to the study of comet nuclei,’ in this volume.Google Scholar
  25. Kouchi, A. (1987). ‘Vapour pressure of amorphous H2O ice and its astrophysical implications,’ Nature 330, 550–552.ADSCrossRefGoogle Scholar
  26. Kouchi, A. (1989). ‘Evaporation of H2O ice and its astrophysical implications,’ to be published in J. Crystal Growth (Proc. Int. Conf. Crystal Growth, held in Sendai, August, 1988).Google Scholar
  27. Kozasa, T., and Hasegawa, H. (1987). ‘Grain formation through nucleation process in astrophysical environments. II,’ Prog. Theor. Phys. 77, 1402–1410.ADSCrossRefGoogle Scholar
  28. Larson, H.P., Weaver, H.A., Mumma, M.J., and Drapatz, S. (1988). ‘Airborne infrared spectroscopy of Comet Wilson (1986l) and comparison with Comet Halley,’ Astrophys. J., 338, 1106–1114.ADSCrossRefGoogle Scholar
  29. Laufer, D.E., Kochavi, E., and Bar-Nun, A. (1987). ‘Structure and dynamics of amorphous water ice,’ Phys. Rev. B36, 9219–9227.ADSGoogle Scholar
  30. Lewis, J.S. (1974). ‘The temperature gradient in the solar nebula,’ Science 186, 440–443.ADSCrossRefGoogle Scholar
  31. Lewis, J.S., and Prinn, R.G. (1980). ‘Kinetic inhibition of CO and N2 reduction in the solar nebula,’ Astrophys. J. 238, 357–364.ADSCrossRefGoogle Scholar
  32. Lunine, J.I. (1989). ‘Primitive bodies: Molecular abundances in Comet Halley as probes of cometary formation environment,’ The Formation and Evolution of Planetary Systems, H.A. Weaver, L. Danley, and F. Paresce (eds.), Cambridge University Press, Cambridge, pp. 213–242.Google Scholar
  33. Moore, M.H., Donn, B., and Hudson, R.L. (1988). ‘Vaporization of ices containing S2 — Implications for comets,’ Icarus 74, 399–412.ADSCrossRefGoogle Scholar
  34. Moore, M.H., Donn, B., Khanna, R., and A’Hearn, M.F. (1983). ‘Studies of proton-irradiated cometary-type ice mixtures,’ Icarus 54, 388–405.ADSCrossRefGoogle Scholar
  35. Moroz, V.I., Combes, M., Bibring, J.P., Coron, N., Crovisier, J., Encrenaz, T., Crifo, J.F., Sanko, N., Grigoriev, A.V., Bockelée-Morvan, D., Gispert, R., Nikolsky, Y.V., Emerich, C., Lamarre, J.M., Rocard, F., Krasnopolsky, V.A., and Owen, T. (1987). ‘Detection of parent molecules in comet Halley, from the IKS-Vega experiment,’ Astron. Astrophys. 187, 513–518.ADSGoogle Scholar
  36. Mumma, M.J., Blass, W.E., Weaver, H.A., and Larson, H.P. (1990). ‘Measurements of the ortho-para ratio and nuclear spin temperature of water vapor in comet P/Halley,’ Icarus, in press.Google Scholar
  37. Mumma, M.J., Weaver, H.A., and Larson, H.P. (1986). ‘The ortho/para ratio of water vapor in comet Halley,’ 20th ESLAB Symposium on the Exploration of Halley’s Comet, ESA SP-250, vol. 1, pp. 341–346.Google Scholar
  38. Mumma, M.J., Weaver, H.A., and Larson, H.P. (1987). ‘The ortho-para ratio of water vapor in comet P/Halley,’ Astron. Astrophys. 187, 419–424.ADSGoogle Scholar
  39. Prialnik, D., Bar-Nun, A., and Podolak, M. (1987). ‘Radiogenic heating of comets by 26A1 and implications for their time of formation,’ Astrophys. J. 319, 993–1002.ADSCrossRefGoogle Scholar
  40. Prinn, R.G., and Fegley, B., Jr. (1989). ‘Solar nebula chemistry: Origin of planetary, satellite, and cometary volatiles,’ Origin and Evolution of Planetary and Satellite Atmospheres, S. Atrea, J. Pollack, and M. Matthews (eds.), University of Arizona Press, Tucson, pp. 78–136.Google Scholar
  41. Richardson, H.H., Wooldridge, P.J., and Devlin, J.P. (1985). ‘FT-IR spectra of vacuum deposited clathrate hydrates of oxirane H2S, THF, and ethane,’ J. Chem. Phys. 83, 4387–4394.ADSCrossRefGoogle Scholar
  42. Rickman, H. (1990). ‘The thermal history and structure of cometary nuclei,’ in this volume.Google Scholar
  43. Sanford, S.A., and Allamandola, L.J. (1988). ‘The condensation and vaporization behavior of H2O:CO ices and implications for interstellar grains and cometary activity,’ Icarus 76, 201–224.ADSCrossRefGoogle Scholar
  44. Sanford, S.A., Allamandola, L.J., Tielens, A.G.G.M., and Valero, G.J. (1988). ‘Laboratory studies of the infrared spectral properties of CO in astrophysical ices,’ Astrophys. J. 329, 498–510.ADSCrossRefGoogle Scholar
  45. Schloerb, F.P., Kinzel, W.M., Swade, D.A., and Irvine, W.M. (1987). ‘Observations of HCN in comet P/Halley,’ Astron. Astrophys. 187, 475–480.ADSGoogle Scholar
  46. Schmitt, B., and Klinger, J. (1987). ‘Different trapping mechanisms of gases by water ice and their relevance for cometary nuclei,’ Proc. Symposium on the Diversity and Similarity of Comets, ESA SP-278, pp. 613–619.Google Scholar
  47. Schmitt, B., Greenberg, J.M., and Grim, R.J.A. (1989). ‘The temperature dependence of the CO infrared band strength in CO:H2O ices,’ Astrophys. J. 340, L33–L36.ADSCrossRefGoogle Scholar
  48. Strazzulla, G., and Johnson, R.E. (1990). ‘Irradiation effects on comets and cometary debris,’ in this volume.Google Scholar
  49. Urey, H. (1952). The Planets, Oxford University Press, Oxford.Google Scholar
  50. Vanysek, V. (1990). ‘Isotopic ratios in comets,’ in this volume.Google Scholar
  51. Vanysek, V., and Rahe, J. (1978). ‘12C/13C ratio in comets,’ Moon and Planets 18, 441–445.ADSCrossRefGoogle Scholar
  52. Wallis, M.K. (1980). ‘Radiogenic melting of primordial comet interior,’ Nature 284, 431–433.ADSCrossRefGoogle Scholar
  53. Weaver, H.A., Mumma, M.J., and Larson, H.P. (1990). ‘Infrared spectroscopy of cometary parent molecules,’ in this volume.Google Scholar
  54. Whipple, F.L., and Stefanik, R.P. (1966). ‘On the physics and splitting of cometary nuclei,’ Mem. Soc. Roy. Sci. Liège, Sér. 5, 12, 33–52.ADSGoogle Scholar
  55. Woods, T.N., Feldman, P.D., Dymond, K.F., and Sahnow, D.J. (1986). ‘Rocket ultraviolet spectroscopy of comet Halley and abundance of carbon monoxide and carbon,’ Nature 324, 436–438.ADSCrossRefGoogle Scholar
  56. Wyckoff, S., Lindholm, E., Wehinger, P.A., Peterson, B.A., Zucconi, J.-M., and Festou, M.C. (1989). ‘The 12C/13C abundance ratio in comet Halley,’ Astrophys. J. 339, 488–500.ADSCrossRefGoogle Scholar
  57. Yabushita, S., and Wada, K. (1988). ‘Radioactive heating and layered structure of cometary nuclei,’ Earth, Moon, and Planets 40, 303–313.ADSCrossRefGoogle Scholar
  58. Yamamoto, T. (1985a). ‘Formation environment of cometary nuclei in the primordial solar nebula,’ Astron. Astrophys. 142, 31–36.ADSGoogle Scholar
  59. Yamamoto, T. (1985b). ‘Formation history and environment of cometary nuclei,’ Ices in the Solar System, J. Klinger, D. Benest, A. Dollfus, and R. Smoluchowski (eds.), D. Reidel Publishing Co., Dordrecht, pp. 205–219.CrossRefGoogle Scholar
  60. Yamamoto, T., and Hasegawa, H. (1977). ‘Grain formation through nucleation process in astrophysical environment,’ Prog. Theor. Phys. 58, 816–828.ADSCrossRefGoogle Scholar
  61. Yamamoto, T., and Kozasa, T. (1988). ‘The cometary nucleus as an aggregate of planetesimals,’ Icarus 75, 540–551.ADSCrossRefGoogle Scholar
  62. Yamamoto, T., Nakagawa, N., and Fukui, Y. (1983). ‘The chemical composition and thermal history of the ice of a cometary nucleus,’ Astron. Astrophys. 122, 171–176.ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • Tetsuo Yamamoto
    • 1
  1. 1.Institute of Space and Astronautical ScienceSagamiharaJapan

Personalised recommendations