Advertisement

Laboratory Simulation of Cometary Processes: Results From First Kosi Experiments

  • E. Grün
  • A. Bar-Nun
  • J. Benkhoff
  • A. Bischoff
  • H. Düren
  • H. Hellmann
  • P. Hesselbarth
  • P. Hsiung
  • H. U. Keller
  • J. Klinger
  • J. Knölker
  • H. Kochan
  • H. Kohl
  • G. Kölzer
  • D. Krankowsky
  • P. Lämmerzahl
  • K. Mauersberger
  • G. Neukum
  • A. Oehler
  • L. Ratke
  • K. Roessler
  • G. Schwehm
  • T. Spohn
  • D. Stöffler
  • K. Thiel
Part of the Astrophysics and Space Science Library book series (ASSL, volume 167)

Abstract

In situ observations of comet Halley provided the first photographs of a cometary nucleus and yielded information about its environment, including the emitted gas and dust. The relation between these measurements and properties of and processes on the nucleus is established by theoretical modelling, while laboratory experiments may provide some of the physical parameters needed. In addition, laboratory tests can stimulate new ideas for processes that may be relevant to cometary physics. Processes to be studied in detail by large-scale laboratory experiments may include: (1) heat transport phenomena during sublimation of porous ice-dust mixtures, (2) material modification and chemical fractionation caused by the sublimation processes, (3) buildup and destruction of dust mantles, (4) detailed studies of gas release from mixtures of volatile ices, and (5) the investigation of ice and dust particle release mechanisms. The KOSI-team (Kometensimulation) carried out sublimation experiments with ice-mineral mixtures in a large Space Simulator. During initial experiments, cylindrical samples of 30-cm diameter and 15-cm thickness were irradiated with up to 2700-W/m2 light energy. The samples consisted of water-ice or water- and CO2-ice mineral mixtures. The experiments showed the importance of advection for heat transport into the interior. It was found that the sublimation of CO2 advances into the sample at a higher speed than that of water vapor release. Therefore, emission of volatile gases responded to insolation changes with a time lag of several hours. The ratio of the emitted gas species, as well as the dust-to-gas mass ratio, differs significantly from the values within the sample. A partly permeable refractory mantle of minerals and carbonaceous material developed with time. Dust and ice particle emission has been observed to occur from irradiated dirty ices as well as from dust mantles.

Keywords

Dust Emission Laboratory Simulation Cometary Nucleus Dust Collector Back Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bar-Nun, A., Herman, D., Laufer, D. and Rappaport, M.L., 1985: Trapping and release of gases by water ice and implications for icy bodies; Icarus, 63, 317–332ADSCrossRefGoogle Scholar
  2. Bischoff, A. and Stöffler, D., 1988: Comet nucleus simulation experiments: Mineralogical aspects of sample preparation and analysis; Lunar and Planet. Sci. XIX, Lunar and Planetary Institute, Houston, 90–91Google Scholar
  3. Brin, G.D. and Mendis, D.A., 1979: Dust release and mantle development in comets; Astrophys. J., 229, 402–408ADSCrossRefGoogle Scholar
  4. Crifo, J.F., 1989: Inferences concerning water vapour viscosity and mean free path at low temperatures; Astron. Astrophys., in pressGoogle Scholar
  5. Delsemme, A.H. and Wenger, A., 1970: Physico-chemical phenomena in comets — I. Experimental study of snows in a cometary environment; Planet. Space Sci., 18, 709–715ADSCrossRefGoogle Scholar
  6. Eberhardt, P., Krankowsky, D., Schulte, W., Dolder, U., Lämmerzahl, P., Berthelier, J.J., Woweries, J., Stubbemann, U., Hodges, R.R., Hoffman, J.H. and Illiano, J.M., 1987: The CO and N2 abundance in comet P/Halley; Astron. Astrophys., 187, 481–484ADSGoogle Scholar
  7. Fanale, F.P. and Salvail, J.R., 1984: An idealized short-period comet model: Surface insolation, H2O flux, dust flux, and mantle evolution; Icarus, 60, 476–511ADSCrossRefGoogle Scholar
  8. Gombosi, T.I. and Körösmezey, A., 1989: Modeling of the cometary nucleus-coma interface region; Adv. Space Res., Vol. 9, No. 3, 41–51ADSCrossRefGoogle Scholar
  9. Gombosi, T.I., Nagy, A.F. and Cravens, T.E., 1986: Dust and neutral gas modeling of the inner atmosphere of comets; Rev. Geophys., 24, 667–700ADSCrossRefGoogle Scholar
  10. Good, W., 1982: Structural investigations of snow and ice on core III from the drilling on Vernagtferner, Austria; Z.f. Gletscherkunde u. Glazialgeologie 18, 53–64Google Scholar
  11. Good, W., 1987: Thin sections, serial cuts and 3-D analysis of snow; Avalanche Formation, Movement and Effects, IAHS Publ. 182, 35–48Google Scholar
  12. Grün, E., Kochan, H., Roessler, K. and Stöffler, D., 1987: Simulation of cometary nuclei; Proc. Symposium on Diversity and Similarity of Comets, eds. E.J. Rolfe and B. Battrick, ESA-SP 278, 501–508Google Scholar
  13. Grün, E., Benkhoff, J., Bischoff, A., Düren, H., Hellmann, H., Hesselbarth, P., Hsiung, P., Keller, H.U., Klinger, J., Knölker, J., Kochan, H., Neukum, G., Oehler, A., Roessler, K., Spohn, T., Stöffler, D. and Thiel, K., 1989a: Modification of comet materials by the sublimation process: Results from simulation experiments; Workshop on Analysis of Returned Comet Nucleus Samples, Milpitas (in press)Google Scholar
  14. Grün, E., Benkhoff, J., Fechtig, H., Hesselbarth, P., Klinger, J., Kochan, H., Kohl, H., Krankowsky, D., Lämmerzahl, P., Seboldt, W., Spohn, T. and Thiel, K., 1989b: Mechanisms of dust emission from the surface of a cometary nucleus; Adv. Space Res., Vol. 9, No. 3, 133–137ADSCrossRefGoogle Scholar
  15. Hanner, M.S., 1981: On the detectability of icy grains in the comae of comets; Icarus 47, 342–350ADSCrossRefGoogle Scholar
  16. Hapke, B., 1981: Bidirectional reflectance spectroscopy, 1. Theory; J. Geophys. Res., 86, 3039–3054ADSCrossRefGoogle Scholar
  17. Horanyi, M., Gombosi, T.I., Cravens, T.e:, Körösmezey, A., Kecskemety, K., Nagy, A.F., and Szegö, K., 1984: The friable sponge model of cometary nuclei; Astrophys. J., 278, 449–455ADSCrossRefGoogle Scholar
  18. Ibadinov, K.I., 1989: Laboratory investigation of the sublimation of comet nucleus models; Adv. Space Res., Vol. 9, No. 3, 97–112; cf. also this volumeADSCrossRefGoogle Scholar
  19. Jessberger, E.K., Christoforidis, A. and Kissel, J., 1988: Aspects of the major element composition of Halley’s dust; Nature, 332, 691–695ADSCrossRefGoogle Scholar
  20. Kajmakov, E.A. and Sharkov, V.I., 1972: Laboratory simulation of icy cometary nuclei; The Motion, Evolution of Orbits, and Origin of Comets, eds. G.A. Chebotarev, E.I. Kazimirchak-Polanskaya and B.G. Marsden, Reidel Publ. Comp., Dordrecht, 308–314CrossRefGoogle Scholar
  21. Keller, H. U., Arpigny, C., Barbieri, C., Bonnet, R. M., Cazes, S., Coradini, M., Cosmovici, C. B., Delamere, W. A., Huebner, W. F., Hughes, D.W., Jamar, C., Malaise, D., Reitsema, H.J., Schmidt, H.U., Schmidt, W.K.H., Seige, P., Whipple, F. L. and Wilhelm, K., 1986: First Halley Multicolour Camera imaging results from Giotto; Nature, 321, 320–326.ADSCrossRefGoogle Scholar
  22. Kerridge, J.F. and Matthews, M.S. (editors), 1988: Meteorites and the Early Solar System, Univ. of Arizona Press, TusconGoogle Scholar
  23. Kissel, J., Krueger, F.R., 1987: The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1; Nature, 326, 755–760ADSCrossRefGoogle Scholar
  24. Klinger, J., 1981: Some consequences of a phase transformation of water ice on the heat balance of a comet; Icarus 47, 320–324.ADSCrossRefGoogle Scholar
  25. Klinger, J., Benkhoff, J., Espinasse, S., Grün, E., Ip, W., Joo, F., Keller, H.U., Kochan, H., Kohl, H., Roessler, K., Seboldt, W., Spohn, T. and Thiel, K., 1989a: How far do results of recent simulation experiments fit current models of cometary nuclei?; Proc 19th Lunar Planet. Sci. Conf., Lunar and Planetary Institute, Houston, 493–497Google Scholar
  26. Klinger, J., Eich, G., Bischoff, A., Joo, F., Kochan, H., Roessler, K., Stichler, and Stöffler, D., 1989b: “KOSI” comet simulation experiment at DFVLR: Sample preparation and the evolution of the 18O/16O and the D/H ratio in the icy component; Adv. Space Res., Vol. 9, No. 3, 123–125ADSCrossRefGoogle Scholar
  27. Kochan, H., Benkhoff, J., Bischoff, A., Fechtig, H., Feuerbacher, B., Grün, E., Joo, F., Klinger, J., Kohl, H., Krankowsky, D., Roessler, K., Seboldt, W., Thiel, K., Schwehm, G. and Weishaupt, U., 1989a: Laboratory simulation of a cometary nucleus: Experimental setup and first results; Proc. 19th Lunar Planet. Sci. Conf., Lunar and Planetary Institute, Houston, 487–492Google Scholar
  28. Kochan, H., Feuerbacher, B., Joo, F., Klinger, J., Seboldt, W., Bischoff, A., Düren, H., Stöffler, D., Spohn, T., Fechtig, H., Grün, E., Kohl, H., Krankowsky, D., Roessler, K., Thiel, K., Schwehm, G. and Weishaupt, U., 1989b: Comet simulation experiments in the DFVLR Space Simulators; Adv. Space Res., Vol. 9, No. 3, 113–122ADSCrossRefGoogle Scholar
  29. Kochan, H., Ratke, L., Hellmann, H., Thiel, K. and Grün, E., 1989c: Particle emission from artificial cometary surfaces: Material science aspects; Proc. 20th Lunar and Planet. Sci. Conf., Lunar and Planetary Institute, Houston, submittedGoogle Scholar
  30. Kohl, H., Grün, E. and Weishaupt, U., 1989: A new method for analyzing low velocity particle impacts; submitted to Planet. Space Sci.Google Scholar
  31. Krankowsky, D., Lämmerzahl, P., Herrwerth, I., Woweries, J., Eberhardt, P., Dolder, U., Herrman, U., Schulte, W., Berthelier, J.J., Illiano, J.M., Hodges, R.R., and Hoffman, J.H., 1986: In situ gas and ion measurements at comet Halley; Nature, 321, 326–329ADSCrossRefGoogle Scholar
  32. Krankowsky, D. and Eberhardt, P., 1989: Evidence for the composition of ices in the nucleus of comet Halley; Comet Halley 1986, Worldwide Investigations, Results and Interpretations, Ellis-Horwood Limited, Chichester, in pressGoogle Scholar
  33. Kührt, E., 1984: Temperature profiles and thermal stress on cometary nuclei; Icarus, 60, 512–521CrossRefGoogle Scholar
  34. Mackinnon, I.D.R. and Rietmeijer, F.J.M., 1987: Mineralogy of chondritic interplanetary dust particles; Review of Geophysics, 25, 1527–1553ADSCrossRefGoogle Scholar
  35. McDonnell, J.A.M. Pankiewicz, G.S., Birchley, P.N.W., Green, S.F. and Perry, C.H., 1989: The comet nucleus: Ice and dust morphological balances in a production surface of comet P/Halley; Proc. 20th Lunar Planet. Sci. Conf., Lunar and Planetary Institute, Houston, in pressGoogle Scholar
  36. McKay, C.P., Squires, S.W. and Reynolds, R.T., 1986: Methods for computing core temperatures; Icarus, 66, 625–629ADSCrossRefGoogle Scholar
  37. Prialnik, D., 1989: Thermal evolution of cometary nuclei; Adv. Space Res., Vol. 9, No 3, 25–40ADSCrossRefGoogle Scholar
  38. Prialnik, D. and Bar-Nun, A., 1988: The formation of a permanent dust mantle and its effect on cometary activity; Icarus, 74, 272–283ADSCrossRefGoogle Scholar
  39. Roessler, K., Hsiung, P., Heyl, M., Neukum, G., Oehler, A., Kochan, H., 1989: Handling and analysis of ices in cryostats and glove boxes in view of cometary samples; Workshop on Analysis of Returned Comet Nucleus Samples, Milpitas (in press)Google Scholar
  40. Sagdeev, R.Z., Szabo, F., Avanesov, G.A., Cruvellier, P., Szabo, L., Szegö, K., Abergel, A., Balazs, A., Barinov, I.V., Bertaux, J.-L., Blamont, J., Detaille, M., Dermarelis, E., Dul’nev, G.N., Endröczy, G., Gardos, M., Kanyo, M., Kostenko, V.I., Krasikov, V.A., Nguyen-Trong, T., Nyitrai, Z., Reny, I., Rusznyak, P., Shamis, V.A., Smith, B., Sukhanov, K.G., Szabo, F., Szalai, S., Tarnopolsky, V.I., Toth, I., Tsukanova, G., Valnicek, B.I., Varhalmi, L., Zaiko, Yu K., Zatsepin, S. I., Ziman, Ya L., Zsenei, M. and Zhukov, B. S., 1986: Television observations of comet Halley from Vega spacecraft; Nature, 321, 262–266.ADSCrossRefGoogle Scholar
  41. Sandford, S.A. and Walker, R.M., 1985: Laboratory infrared transmission spectra of individual interplanetary dust particles from 2.5 to 25 microns; Astrophys. J., 291, 838–851ADSCrossRefGoogle Scholar
  42. Saunders, R.S., Fanale, F.P., Parker, T.J., Stephens, J.B. and Sutton, S., 1986: Properties of filamentary sublimation residues from dispersions of clay in ice; Icarus, 66, 94–104ADSCrossRefGoogle Scholar
  43. Shulman, E.M., 1972: The evolution of cometary nuclei; The Motion, Evolution of Orbits, and Origin of Comets, (eds. G.A. Chebotarev, E.I. Kazimirchak-Polanskaya and B.G. Marsden), Reidel Publ. Comp., Dordrecht, 271–276CrossRefGoogle Scholar
  44. Simpson, J.A., Rabinowitz, D., Tuzzolino, A.J., Ksanformality, L.V., Sagdeev, R.Z., 1987: The dust coma of comet P/Halley: Measurements on the Vega-1 and Vega-2 spacecraft; Astron. Astrophys. 187, 742–752ADSGoogle Scholar
  45. Smoluchowski, R., 1981: Amorphous and porous ice in cometary nuclei, Astrophys. J. 244, L31–L34.ADSCrossRefGoogle Scholar
  46. Spohn, T. and Benkhoff, J., 1989: Thermal history of models for KOSI sublimation experiments; submitted to IcarusGoogle Scholar
  47. Spohn, T., Benkhoff, J., Klinger, J., Grün, E. and Kochan, H., 1989: Thermal modeling of two KOSI comet nucleus simulation experiments; Proc. COSPAR workshop on Comet Nucleus Modeling and Cometary Materials, Adv. Space Res., Vol.9, No. 3, 127–131ADSCrossRefGoogle Scholar
  48. Stöffler, D., Düren, H. and Knölker, J., 1989: Concepts for the curation, primary examination, and petrographic analysis of comet nucleus samples returned to Earth; Workshop on Analysis of Returned Comet Nucleus Samples, Milpitas (in press)Google Scholar
  49. Storrs, A.D., Fanale, F.P., Saunders, R.S. and Stephens, J.B., 1988: The formation of filamentary sublimate residues (FSR) from mineral grains, Icarus, 76, 493–512ADSCrossRefGoogle Scholar
  50. Thiel, K., Kochan, H., Roessler, K., Grün, E., Schwehm, G., Hellmann, H., Hsiung, P. and Kölzer, G., 1989: Mechanical and SEM analysis of artificial comet nucleus samples; Workshop on Analysis of Returned Comet Nucleus Samples, Milpitas (in press)Google Scholar
  51. Weissman, P.R., Kieffer, H.H., 1981: Thermal modeling of cometary nuclei; Icarus 47, 302–311ADSCrossRefGoogle Scholar
  52. Whipple, F.L., 1950: A comet model. I. The acceleration of comet Encke; Astrophys. J. 111, 375–394ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • E. Grün
    • 1
  • A. Bar-Nun
    • 2
  • J. Benkhoff
    • 3
  • A. Bischoff
    • 3
  • H. Düren
    • 3
  • H. Hellmann
    • 4
  • P. Hesselbarth
    • 1
  • P. Hsiung
    • 5
  • H. U. Keller
    • 6
  • J. Klinger
    • 7
  • J. Knölker
    • 3
  • H. Kochan
    • 4
  • H. Kohl
    • 1
  • G. Kölzer
    • 8
  • D. Krankowsky
    • 1
  • P. Lämmerzahl
    • 1
  • K. Mauersberger
    • 1
  • G. Neukum
    • 9
  • A. Oehler
    • 9
  • L. Ratke
    • 4
  • K. Roessler
    • 5
  • G. Schwehm
    • 10
  • T. Spohn
    • 3
  • D. Stöffler
    • 3
  • K. Thiel
    • 8
  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany
  2. 2.Dept. of Geophysics and Planetary SciencesTel Aviv UniversityTel AvivIsrael
  3. 3.Institut für PlanetologieWWUMünsterGermany
  4. 4.Institut für RaumsimulationDLRKöln-PorzGermany
  5. 5.Institut für Chemie IKFAJülichGermany
  6. 6.Max-Planck-Institut für AeronomieKatlenburg-LindauGermany
  7. 7.Laboratoire de Glaciologie et Geophysique de l’EnvironnementSaint-Martin-d’HeresFrance
  8. 8.Abteilung NuklearchemieUniversität KölnKölnGermany
  9. 9.Institut für OptoelektronikDLROberpfaffenhofenGermany
  10. 10.Space Science Department of ESAESTECNoordwijkThe Netherlands

Personalised recommendations