Advertisement

Physical Properties of Frozen Volatiles—Their Relevance to the Study of Comet Nuclei

  • J. Klinger
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 167)

Abstract

The structural and thermodynamical properties of water ice and ice mixtures containing CO, CO2, CH4, and NH3 are thought to be important for the evolution of cometary nuclei. Based on recent laboratory studies performed by several groups, an overview is given of the properties of various ices condensed at low temperatures and of their evolution during heating up to a temperature of about 200 K, typical of the perihelion temperature of a comet such as P/Halley. It is shown that the porous surface of amorphous water ice plays an important role in the retention of other volatiles. The kinetics of formation and of decomposition of clathrate hydrates are discussed. The molecular hydrates formed by NH3 are briefly presented, and the possibility of their occurrence in comet nuclei is discussed. With special attention drawn to amorphous ices and clathrate hydrates, a qualitative discussion of the influence of the physical properties of various types of ices on the thermal behavior of comet nuclei and on gas production rates of comets is presented.

Keywords

Solar System Comet Nucleus Dissociation Pressure Cometary Material International Ultraviolet Explorer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A’Hearn, M.F., and Feldman, P.D. (1985). ‘S2: A Clue to the Origin of Cometary Ice?’, in Ices in the Solar System, J. Klinger, D. Benest, A. Dollfus, and R. Smoluchowski (eds.), D. Reidel Publishing Co., Dordrecht, pp. 463–471.CrossRefGoogle Scholar
  2. Allen, M., Delitsky, M., Huntress, W., Yung, Y., Ip, W.-H., Schwenn, R., Rosenbauer, H., Shelley, E., Balsiger, H., and Geiss, J. (1987). ‘Evidence for Methane and Ammonia in the Coma of Comet P/Halley’, Astron. Astrophys. 187, 502–512.ADSGoogle Scholar
  3. Bar-Nun, A., Herman, G., and Laufer, D. (1985). ‘Trapping and Release of Gases by Water Ice and Implications for Icy Bodies’, Icarus 63, 317–332.ADSCrossRefGoogle Scholar
  4. Bar-Nun, A., Dror, J., Kochavi, E., and Laufer, D. (1987). ‘Amorphous Water Ice and Its Ability To Trap Gases’, Phys. Rev. B 35, 2427–3435.ADSCrossRefGoogle Scholar
  5. Bar-Nun, A., Kleinfield, I., and Kochavi, E. (1988). ‘Trapping of Gas Mixtures by Amorphous Water Ice’, Phys. Rev. B 38, 7749–7754.ADSCrossRefGoogle Scholar
  6. Bertie, J.E., and Morrison, M.M. (1980). ‘The Infrared Spectra of Hydrates of Ammonia, NH3·H2O and 2NH3·H2O at 95 K’, J. Chem. Phys. 73, 4832–4837.ADSCrossRefGoogle Scholar
  7. Bertie, J.E., and Shehata, M.R. (1984). ‘Ammonia Dihydrate: Preparation, X-Ray Powder Diffraction Pattern, and Infrared Spectrum of NH3·2H2O at 100 K’, J. Chem. Phys. 81, 27–30.ADSCrossRefGoogle Scholar
  8. Bockelée-Morvan, D., Crovisier, J., Despois, D., Forveille, T., Gérard, E., Schrami, J., and Thum, C. (1986). ‘A Search for Parent Molecules at Millimeter Wavelengths in Comets P/Giacobini-Zinner 1984e and P/Halley 1982i’, in Proc. 20th ESLAB Symposium on the Exploration of Halley’s Comet, ESA SP-250, Vol. I, pp. 365–367.Google Scholar
  9. Boutron, P., and Alben, R. (1975). ‘Structural Model for Amorphous Solid Water’, J. Chem. Phys. 62, 4848–4853.ADSCrossRefGoogle Scholar
  10. Chowdhury, M.R., Dore, J.C., and Montangue, D.G. (1983). ‘Neutron Diffraction Studies and CRN Model of Amorphous Ice’, J. Phys. Chem. 87, 4037–4039.CrossRefGoogle Scholar
  11. Davidson, D.W., Garg, S.K., Gough, S.R., Handa, Y.P., Ratcliffe, C.I., Tse, J.S., and Ripmeester, J.A. (1984). ‘Some Structural and Thermodynamic Studies of Clathrate Hydrates’, Journal of Inclusion Phenomena 2, 231–238.CrossRefGoogle Scholar
  12. Davidson, D.W., Gough, S.R., Handa, Y.P., Ratcliffe, C.I., Ripmeester, J.A., and Tse, J.S. (1987a). ‘Some Structural Studies of Clathrate Hydrates’, Journal de Physique C1, supplément au no. 3, 48, 537–542.Google Scholar
  13. Davidson, D.W., Desando, M.A., Gough, S.R., Handa, Y.P., Ratcliffe, C.I., Ripmeester, J.A., and Tse, J.S. (1987b). ‘A Clathrate Hydrate of Carbon Monoxide’, Nature 328, 418–419.ADSCrossRefGoogle Scholar
  14. Delsemme, A.H., and Miller, D.C. (1970). ‘Physico-Chemical Phenomena in Comets II — Gas Adsorption in the Snows of the Nucleus’, Planet. Space Sci. 18, 717–730.ADSCrossRefGoogle Scholar
  15. Delsemme, A.H., and Swings, P. (1952). ‘Hydrates de Gaz Dans les Noyaux Cométaires et les Grains Interstellaires’, Ann. Astrophys. 15, 1–16.ADSGoogle Scholar
  16. Delsemme, A.H., and Wenger, A. (1970). ‘Physico-Chemical Phenomena in Comets I — Experimental Study of Snows in a Cometary Environment’, Planet. Space Sci. 18, 709–715.ADSCrossRefGoogle Scholar
  17. Donn, B. (1963). ‘The Origin and Structure of Icy Cometary Nuclei’, Icarus 2, 396–402.ADSCrossRefGoogle Scholar
  18. Dowell, L.G., and Rinfret, A.P. (1960). ‘Low Temperature Forms of Ice as Studied by X-Ray Diffraction’, Nature 188, 1144–1148.ADSCrossRefGoogle Scholar
  19. Drapatz, S., Larson, H.P., and Davis, D.S. (1987). ‘Search for Methane in Comet P/Halley’, Astron. Astrophys. 187, 497–501.ADSGoogle Scholar
  20. Eberhardt, P., Krankowsky, D., Schulte, W., Dolder, U., Lämmerzahl, P., Berthelier, J.J., Woweries, J., Stubbemann, U., Hodges, R.R., Hoffman, J.H., and Illiano, J.M. (1987). ‘The CO and N2 Abundance in Comet P/Halley’, Astron. Astrophys. 187, 481–484.ADSGoogle Scholar
  21. Eisenberg, D., and Kauzmann, W. (1969). Structure and Properties of Water, Clarendon Press, Oxford.Google Scholar
  22. Espinasse, S., Klinger, J., Ritz, C., and Schmidt, B. (1989). ‘A Method of Estimating Temperature Profiles and Chemical Differentiation in the Near Surface Layers of Porous Comet Nuclei — First Results for Comet P/Churyumov-Gerasimenko’, in Proc. International Workshop on Physics and Mechanics of Cometary Materials, ESA SP-302, pp. 185–190.Google Scholar
  23. Falk, M. (1987). ‘Amorphous Carbon Dioxide’, J. Chem. Phys. 86, 560–564.ADSCrossRefGoogle Scholar
  24. Festou, M.C., Feldman, P.D., A’Hearn, M.F., Arpigny, C., Cosmovici, C.B., Danks, A.C., McFaden, L.A., Weaver, H.A., and Woods, T.N. (1986). ‘IUE Observations of Comet Halley During the Vega and Giotto Encounters’, Nature 321, 361–363.ADSCrossRefGoogle Scholar
  25. Ghormley, J.A. (1967). ‘Adsorption and Occlusion of Gases by the Low-Temperature Forms of Ice’, J. Chem. Phys. 46, 1321–1325.ADSCrossRefGoogle Scholar
  26. Ghormley, J.A. (1968). ‘Enthalpy Changes and Heat-Capacity Changes in the Transformations From High-Surface-Area Amorphous Ice to Stable Hexagonal Ice’, J. Chem. Phys. 48, 503–508.ADSCrossRefGoogle Scholar
  27. Greenberg, J.M. (1986). ‘Fluffy Comets’, in Asteroids, Comets, Meteors II, C.-I. Lagerkvist, B.A. Lindblad, H. Lundstedt, and H. Rickman (eds.), Uppsala University, Uppsala, pp. 221–223.Google Scholar
  28. Hobbs, P.V. (1974). Ice Physics, Clarendon Press, Oxford.Google Scholar
  29. Johnson, M.L., Schwake, A., and Nicol, M. (1985). ‘Partial Phase Diagram for the System NH3—H2O: The Water-Rich Region’, in Ices in the Solar System, J. Klinger, D. Benest, A. Dollfus, and R. Smoluchowski (eds.), D. Reidel Publishing Co., Dordrecht, pp. 39–47.CrossRefGoogle Scholar
  30. Journal de Physique (1987). 48, Colloque C1, supplément au no. 3.Google Scholar
  31. Journal of Glaciology (1978). Special issue on the ‘Symposium on the Physics and Chemistry of Ice’, Cambridge, England.Google Scholar
  32. Journal of Physical Chemistry (1983). Special issue on the ‘VII International Symposium on the Physics and Chemistry of Ice’.Google Scholar
  33. Kahane, A., Klinger, J., and Philippe, M. (1969). ‘Dopage Sélectif de la Glace Monocristalline Avec de l’Hélium et du Néon’, Solid State Communications 7, 1055–1056.ADSCrossRefGoogle Scholar
  34. Klinger, J. (1980). ‘Influence of a Phase Transition of Ice on the Heat and Mass Balance of Comets’, Science 209, 271–272.ADSCrossRefGoogle Scholar
  35. Klinger, J. (1986). ‘Possible Alterations of Matter in Periodic Comets’, in The Comet Nucleus Sample Return Mission, ESA SP-249, pp. 69–74.Google Scholar
  36. Klinger, J., Benest, D., Dollfus, A., and Smoluchowski, R. (eds.) (1985a). Ices in the Solar System, D. Reidel Publishing Co., Dordrecht.Google Scholar
  37. Klinger, J., Ocampo, J., and Schmitt, B. (1985b). ‘On Clathrate Hydrates in Comets’, in Asteroids, Comets, Meteors II, C.-I. Lagerkvist, B.A. Lindblad, H. Lundstedt, and H. Rickman (eds.), Uppsala University, Uppsala, pp. 241–243.Google Scholar
  38. Klinger, J., Benkhoff, J., Espinasse, S., Grün, E., Ip, W., Joo, F., Keller, H.U., Kochan, H., Kohl, H., Roessler, K., Seboldt, W., Spohn, T., and Thiel, K. (1989a). ‘How Far Do Results of Recent Simulation Experiments Fit Current Models of Cometary Nuclei?’, Proc. 19th Lunar Planet. Sci. Conf., Lunar and Planetary Institute, Houston, pp. 493–497.Google Scholar
  39. Klinger, J., Eich, G., Bischoff, A., Joo, F., Kochan, H., Roessler, K., Stichler, W., and Stöffler, D. (1989b). ‘“KOSI” Comet Simulation Experiment at DFVLR: Sample Preparation and the Evolution of the 18O/16O and the D/H Ratio in the Icy Component’, Adv. Space Res. 9, (3)123–(3)125.ADSCrossRefGoogle Scholar
  40. Kouchi, A. (1987). ‘Vapour Pressure of Amorphous H2O Ice and Its Astrophysical Implications’, Nature 330, 550–552.ADSCrossRefGoogle Scholar
  41. Kouchi, A. (1989). ‘Evaporation of H2O—CO Ice and Its Astrophysical Implications’, submitted to J. of Crystal Growth.Google Scholar
  42. Laplace, P.S. (1796). Exposition du Système du Monde, third edition, Paris (1808).Google Scholar
  43. Laufer, D., Kochavi, E., and Bar-Nun, A. (1987). ‘Structure and Dynamics of Amorphous Water Ice’, Phys. Rev. B 36, 9219–9227.ADSCrossRefGoogle Scholar
  44. Léger, A., Klein, J., de Cheveigne, S., Guinet, C., Défourneau, D., and Belin, M. (1979). ‘The 3.1 µm Absorption in Molecular Clouds Is Probably Due to Amorphous H2O Ice’, Astron. Astrophys. 79, 256–259.ADSGoogle Scholar
  45. Léger, A., Gauthier, S., Défourneau, D., and Rouan, D. (1983). ‘Properties of Amorphous H2O Ice and Origin of the 3.1 µm Absorption’, Astron. Astrophys. 117, 164–179.ADSGoogle Scholar
  46. Londono, D., Kuhs, W.F., and Finney, J.L. (1988). ‘Enclathration of Helium in Ice II: The First Helium Hydrate’, Nature 332, 141–142.ADSCrossRefGoogle Scholar
  47. Mayer, E., and Hallbrucker, A. (1987). ‘Cubic Ice From Liquid Water’, Nature 325, 601–602.ADSCrossRefGoogle Scholar
  48. Mayer, E., and Pletzer, R. (1984). ‘Polymorphism in Vapor Deposited Amorphous Solid Water’, J. Chem. Phys. 80, 2939.ADSCrossRefGoogle Scholar
  49. Mayer, E., and Pletzer, R. (1985). ‘Polymorphism in Vapor Deposited Amorphous Solid Water’, in Ices in the Solar System, J. Klinger, D. Benest, A. Dollfus, and R. Smoluchowski (eds.), D. Reidel Publishing Co., Dordrecht, pp. 81–88.CrossRefGoogle Scholar
  50. Mayer, E., and Pletzer, R. (1987). ‘Amorphous Ice. A Microporous Solid: Astrophysical Implications’, Journal de Physique C1, supplément au no. 3, 48, 581–586.Google Scholar
  51. McMillan, J.A., and Los, S.C. (1965). ‘Vitreous Ice: Irreversible Transformations During Warm-Up’, Nature 206, 806–807.ADSCrossRefGoogle Scholar
  52. Miller, S.L. (1973). ‘The Clathrate Hydrates, Their Nature and Occurrence’, in Physics and Chemistry of Ice, E. Whalley, S.J. Jones, and L.W. Gold (eds.), Royal Society of Canada, Ottawa, pp. 42–50.Google Scholar
  53. Miller, S.L. (1985). ‘Clathrate Hydrates in the Solar System’, in Ices in the Solar System, J. Klinger, D. Benest, A. Dollfus, and R. Smoluchowski (eds.), D. Reidel Publishing Co., Dordrecht, pp. 59–79.CrossRefGoogle Scholar
  54. Moroz, V.I., Combes, M., Bibring, J.P., Coron, N., Crovisier, J., Encrenaz, T., Crifo, J.F., Sanko, N., Grigoryev, A.V., Bockelée-Morvan, D., Gispert, R., Nikolsky, Y.V., Emerich, C., Lamarre, J.M., Rocard, F., Krasnopolsky, V.A., and Owen, T. (1987). ‘Detection of Parent Molecules in Comet P/Halley From the IKS—Vega Experiment’, Astron. Astrophys. 187, 513–518.ADSGoogle Scholar
  55. Narten, A.H., Venkatesh, C.G., and Rice, S.A. (1976). ‘Diffraction Pattern and Structure of Amorphous Solid Water at 10 and 77 K’, J. Chem. Phys. 64, 1106–1120.ADSCrossRefGoogle Scholar
  56. Ocampo, J., and Klinger, J. (1982). ‘Adsorption of N2 and CO2 on Ice’, Journal of Colloid and Interface Science 86, 377–383.CrossRefGoogle Scholar
  57. Papoular, R., Léna, P., Marten, A., Rouan, D., and Wijnbergen, J. (1978). ‘Possible Identification of the 45-µm Ice Signature in Orion’, Nature 276, 593–594.ADSCrossRefGoogle Scholar
  58. Patashnick, H., Rupprecht, G., and Schuerman, D.W. (1974). ‘Energy Source for Comet Outbursts’, Nature 250, 313.ADSCrossRefGoogle Scholar
  59. Rickman, H. (1989). ‘The Nucleus of Comet Halley: Surface Structure, Mean Density Gas and Dust Production’, Adv. Space Res. 9, (3)59–(3)71.ADSCrossRefGoogle Scholar
  60. Riehl, N., Bullemer, B., and Engelhardt, H. (eds.) (1969). Physics of Ice, Plenum Press, New York.Google Scholar
  61. Ripmeester, J.A., Tse, J.S., Ratcliffe, C.I., and Powell, B.M. (1987). ‘A New Clathrate Hydrate Structure’, Nature 325, 135–136.ADSCrossRefGoogle Scholar
  62. Sandford, S.A., and Allamandola, L.J. (1988). ‘The Condensation Behavior of H2O:CO Ices and Implications for Interstellar Grains and Cometary Activity’, Icarus 76, 201–224.ADSCrossRefGoogle Scholar
  63. Schloerb, F.P., Kinzel, W.M., Swade, D.A., and Irvine, W.M. (1987). ‘Observations of HCN in Comet Halley’, in Cometary Radio Astronomy, W.M. Irvine, F.P. Schloerb, and L.E. Tacconi-Garman (eds.), National Radio Astronomy Observatory, Green Bank, West Virgina, pp. 65–73.Google Scholar
  64. Schmitt, B., and Klinger, J. (1987). ‘Different Trapping Mechanisms of Gases by Water Ice and Their Relevance for Comet Nuclei’, in Symposium on the Diversity and Similarity of Comets, ESA SP-278, pp. 613–619.Google Scholar
  65. Schmitt, B., Ocampo, J., and Klinger, J. (1987). ‘Structure and Evolution of Different Ice Surfaces at Low Temperature Adsorption Studies’, Journal de Physique C1, supplément au no. 3, 48, 519–525.Google Scholar
  66. Schmitt, B., Grimm, R.J.A., and Greenberg, J.M. (1988). ‘Volatile Molecules in Interstellar Grain Mantles: Diffusion and Infrared Band Strength’, in Dust in the Universe, M.E. Bailey and D.A. Williams (eds.), Cambridge University Press, Cambridge, England, pp. 291–296.Google Scholar
  67. Schmitt, B., Grimm, R., and Greenberg, J.M. (1989a). ‘Spectroscopy and Physico-Chemistry of CO:H2O and CO2:H2O Ices’, in 22nd ESLAB Conference, Infrared Spectroscopy in Astronomy, ESA SP-290, pp. 213–219.Google Scholar
  68. Schmitt, B., Espinasse, S., Grimm, R.J.A., Greenberg, J.M., and Klinger, J. (1989b). ‘Laboratory Studies of Cometary Ice Analogues’, in Proc. International Workshop on Physics and Mechanics of Cometary Materials, ESA SP-302, pp. 65–69.Google Scholar
  69. Smoluchowski, R. (1985). ‘Brightness Curve and Porosity of Comet Nuclei’, in Asteroids, Comets, Meteors II, C.-I. Lagerkvist, B.A. Lindblad, H. Lundstedt, and H. Rickman (eds.), Uppsala University, Uppsala, pp. 305–315.Google Scholar
  70. Smoluchowski, R. (1988). ‘Clathrates in Cometary Nuclei and Porosity’, Mon. Not. R. Astr. Soc. 235, 343–348.ADSGoogle Scholar
  71. Spohn, T., Benkhoff, J., Klinger, J., Grün, E., and Kochan, H. (1989). ‘Thermal Modelling of Two KOSI Comet Nucleus Simulation Experiments’, Adv. Space Res. 9, (3)127–(3)131.ADSCrossRefGoogle Scholar
  72. Sugisaki, M., Suga, H., and Seki, S. (1968). ‘Calorimetric Study of the Glassy State. IV. Heat Capacities of Glassy Water and Cubic Ice’, Bull. Chem. Soc. Japan 41, 2591.CrossRefGoogle Scholar
  73. Watson, K., Murray, B.C., and Brown, H. (1963). ‘The Stability of Volatiles in the Solar System’, Icarus 1, 317–327.ADSCrossRefGoogle Scholar
  74. Whalley, E. (1981). ‘Scheiner’s Halo: Evidence for Ice in the Atmosphere’, Science 211, 389–390.ADSCrossRefGoogle Scholar
  75. Whalley, E., Jones, S.J., and Gold, L.W. (eds.) (1973). Physics and Chemistry of Ice, Royal Society of Canada, Ottawa.Google Scholar
  76. Whipple, F.L. (1950). ‘A Comet Model, I: Acceleration of Comet Encke’, Astrophys. J. 111, 375–394.ADSCrossRefGoogle Scholar
  77. Whipple, F.L., and Huebner, W.F. (1976). ‘Physical Processes in Comets’, Annual Rev. of Astron. and Astrophys. 14, 143–169.ADSCrossRefGoogle Scholar
  78. Wyckoff, S., Tegler, S., and Engel, L. (1988). ‘Ammonia Abundances in Comets’, COSPAR paper S 5. 1. 7, 27th General Assembly of COSPAR, July 1988, Espoo, Finland.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • J. Klinger
    • 1
  1. 1.Laboratoire de Glaciologie et de Géophysique de l’EnvironmentSt. Martin d’Hères CedexFrance

Personalised recommendations