Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 334))

Abstract

The seismic discontinuities at depths near 400 and 650 km are primarily due to phase changes, but they are not necessarily equilibrium phase boundaries in a homogeneous mantle. The jump in velocity near 400 km is too small to be the result of phase changes in an olivine or olivine-orthopyroxene rich material such as pyrolite. If this is an equilibrium phase boundary there must be substantially less olivine and orthopyroxene than is typical of mantle lherzolites or peridotites. The alternative is that the shallow mantle is olivine-rich, and the transition region is more eclogitic, with a high clinopyroxene/garnet ratio. Olivine-rich material, such as harzburgite, is buoyant relative to other mantle assemblages and may have accumulated in the shallow mantle during the various processes of mantle differentiation The seismic velocities in the transition region are less than calculated for the high-pressure phases of olivine, β - or γ-spinel. The transition region therefore is olivine-poor, less than about 50% olivine. The properties of the lower mantle are consistent with a “chondritic” Earth, with high FeO and SiO2-contents compared to peridotites. Thus, there is evidence that the shallow mantle, the transition region and the lower mantle may differ in composition, in intrinsic density and in the depths of phase changes. In order to allow for this possibility, I propose that the shallow mantle (<400 km depth) be called the “perisphere” (peri- for around or nearby). This can also be called the peridotite shell. The transition region, or mesosphere, appears to be a garnetite, primarily garnet and majorite. There is no geophysical or geochemical evidence that there is any interchange of material between the mesosphere and the lower mantle, although it is likely that they are thermally coupled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, R.D., 1968, Early reflections of P’P’ as an indication of upper mantle structure, Bull. Seismo. Soc. Am., 58, p. 1933.

    Google Scholar 

  • Akaogi, M., Ito, E. and Navrotsky, A., 1989, Olivine-modified spinel transitions in the system Mg2SiO4-Fe2SiO4, J. Geophys. Res, 94, pp. 15,671–15,685.

    Article  Google Scholar 

  • Akaogi, M., Navrotsky, A., Yagi, T., Akimoto, S., 1987, Pryoxene-gamet transformations, in Manghnani, M. H., Syono, Y.(eds), High-pressure research in mineral physics, Terra Pub, Tokyo, pp. 251–260.

    Google Scholar 

  • Akimoto, S., and Fujisawa, H., 1968, Olivine-spinel solid solution equilibrium in the system Mg2SiO4-Fe2SiO4, J. Geophys. Res, 73, pp. 1467–1479.

    Article  Google Scholar 

  • Anderson, Don L., 1967a, Latest information from seismic observations: Ch. 12, in The Earth’s Mantle, Academic Press Inc., London, pp. 355–420.

    Google Scholar 

  • Anderson, Don L., 1967b, Phase changes in the upper mantle: Science, v. 157, no. 3793, pp. 1165–1173.

    Article  Google Scholar 

  • Anderson, Don L., 1970, Petrology of the mantle: Mineralog. Soc. America Spec. Paper, v. 3, pp. 85–93.

    Google Scholar 

  • Anderson, Don L., 1975, Chemical plumes in the mantle: Geol. Soc. America Bull., v. 86, no. 11, pp. 1593–1600.

    Article  Google Scholar 

  • Anderson, Don L., 1976, The 650 km mantle discontinuity: Geophys. Res. Lett., v. 3, no. 6, pp. 347–349.

    Article  Google Scholar 

  • Anderson, Don L., 1977, Composition of the mantle and core: Ann. Rev. of Earth and Planet. Sci., v. 5, pp. 179–202.

    Article  Google Scholar 

  • Anderson, Don L., 1979, The upper mantle transition region: Eclogite?: Geophys. Res. Lett., v. 6, no. 6, pp. 433–436.

    Article  Google Scholar 

  • Anderson, Don L., 1979b, Chemical stratification of the mantle: Jour. Geophys. Res., v. 84, no. B11, pp. 6297–6298.

    Article  Google Scholar 

  • Anderson, Don L., 1980, Early evolution of the mantle: Episodes, v. 1980, no. 3, pp. 3–7.

    Google Scholar 

  • Anderson, Don L., 1981, Hotspots, basalts and the evolution of the mantle: Science, v. 213, pl. 82–89.

    Article  Google Scholar 

  • Anderson, Don L., 1981, A global geochemical model for the evolution of the mantle: in AGU Monograph, EVOLUTION OF THE EARTH, Geodynamics Series, v. 5, pp. 6–18.

    Chapter  Google Scholar 

  • Anderson, Don L., 1981c, Rise of deep diapirs: Geology, v. 9, no. 1, pp. 7–9.

    Article  Google Scholar 

  • Anderson, Don L., 1982a, Isotopic evolution of the mantle; the role of magma mixing: Earth Planet. Sci. Lett., v. 57, pp. 1–12.

    Article  Google Scholar 

  • Anderson, Don L., 1982b, Isotopic evolution of the mantle; a model: Earth Planet. Sci. Lett., v. 57, pp.13–24.

    Article  Google Scholar 

  • Anderson, Don L., 1982c, The chemical composition and evolution of the mantle: Advances in Earth and Planet Sci., v. 12, High-Pressure Research in Geophysics, edited by S. Akimoto and M. H. Manghnani, pp. 301–318.

    Google Scholar 

  • Anderson, Don L., 1982d, Hotspots, polar wander, mesozoic convection, and the geoid: Nature, v. 297, no. 5865, pp. 391–393.

    Article  Google Scholar 

  • Anderson, Don L., 1983, Kimberlite and the evolution of the mantle: Proc. Third Int’l. Kimberlite Conf., “Developments in Petrology” (1982), in Kimberlites and Related Rocks, J. Kornprobst, ed., pp. 395–403.

    Google Scholar 

  • Anderson, Don L., 1983b, Chemical composition of the mantle: Jour. Geophys. Res., v. 88 supplement, pp. B41–B52.

    Article  Google Scholar 

  • Anderson, Don L., 1984, The Earth as a planet: paradigms and paradoxes: Science, v. 223, no. 4634, pp. 347–355.

    Article  Google Scholar 

  • Anderson, Don L., 1985, Hotspot magmas can form by fractionation and contamination of MORB, Nature, v. 318, pp. 145–149.

    Article  Google Scholar 

  • Anderson, Don L., 1987a, The Depths of Mantle Reservoirs, in Magmatic Processes, ed. B. O. Mysen, Spec. Publ. No. 1, Geochem. Soc.

    Google Scholar 

  • Anderson, Don L., 1987c, A Seismic Equation of State II. Shear Properties and Thermodynamics of the Lower Mantle, Phys. of the Earth and Planet Int., 45, pp. 307–323.

    Article  Google Scholar 

  • Anderson, Don L., 1987c, Thermally induced phase changes, lateral heterogeneity of the mantle, continental roots and deep slab anomalies, Jour. Geophys. Res., 92, pp. 13,968–13,980.

    Google Scholar 

  • Anderson, Don L., 1988a, Temperature and pressure derivatives of elastic constants with application to the mantle, Jour. Geophys. Res., 93, pp. 4688–4700.

    Article  Google Scholar 

  • Anderson, Don L., 1988b, Correction to Thermally induced phase changes, lateral heterogeneity of the mantle, continental roots and deep slab anomalies, J. Geophys. Res., 93, 1225–1226.

    Google Scholar 

  • Anderson, Don L., 1989a, Composition of the Earth, Science, 243, 367–370.

    Article  Google Scholar 

  • Anderson, Don L., 1989b, Theory of the Earth, Blackwell Scientific Publications, Boston, 366 pp.

    Google Scholar 

  • Anderson, Don L., 1989c, Where on Earth is the Crust?, Physics Today, March 1989, pp. 38–46.

    Google Scholar 

  • Anderson, Don L., and Bass, J. D., 1984, Mineralogy and composition of the upper mantle: Geophys. Res. Lett., v. 11, pp. 637–640.

    Article  Google Scholar 

  • Anderson, Don L., and Bass, J. D., 1986, The transition region of the Earth’s upper mantle, Nature, v. 320, pp. 321–328.

    Article  Google Scholar 

  • Anderson, Don L., and Julian, B. R., 1969, Shear velocities and elastic parameters of the mantle: Jour. Geophys. Research, v. 74, no. 12, pp. 3281–3286.

    Article  Google Scholar 

  • Anderson, Don L., and Toksöz, M. N., 1963, Surface waves on a spherical earth, 1. Upper mantle structure from Love waves: Jour. Geophys. Res., v. 68, no. 11, pp. 3483–3500.

    Article  Google Scholar 

  • Anderson, Don L., and Kovach, R. L., 1964, Attenuation in the mantle and rigidity of the core from multiply reflected core phases: Proc. Nat’l. Acad. Sci., v. 51, no. 2, pp. 168–172.

    Article  Google Scholar 

  • Anderson, O. L., Schreiber, E., and Liebermann, R. C., 1969, Some elastic constant data on minerals relevant to Geophysics, Rev. Geophys., 6, pp. 491–524.

    Article  Google Scholar 

  • Archambeau, C. B., Flinn, E. A., and Lambert, D. G., 1969, Fine structure of the upper mantle, J. Geophys. Res., 74, p. 5825.

    Article  Google Scholar 

  • Bass, J. D., and Anderson, Don L., 1984, Composition of the upper mantle: Geophysical tests of two petrological models: Geophys. Res. Lett, v. 11, no. 3, pp. 237–240.

    Article  Google Scholar 

  • Bernal, J. D., 1936, Discussion, Observatory, 59, pp. 267–268.

    Google Scholar 

  • Bina, C. R., and Wood, B. J., 1987, Olivine-spinel transitions, J. Geophys. Res., 92, pp. 4853–4866.

    Article  Google Scholar 

  • Birch, F., 1952, Elasticity and constitution of the Earth’s interior, J. Geophys. Res., v. 57, p. 227.

    Article  Google Scholar 

  • Burdick, L. J., and Anderson, Don L., 1975, Interpretation of velocity profiles of the mantle: Jour. Geophys. Res., v. 80, no. 8, pp. 1070–1074.

    Article  Google Scholar 

  • Butler, R., and Anderson, Don L., 1978, Equation of state fits to the lower mantle and outer core: Phys. Earth Planet Inter., v. 17, pp. 147–162.

    Article  Google Scholar 

  • Cazenave A. and. Sourian, A. and Donink, K., 1989, Glorbal Coupling of Earth surface topography with hotspots, geoid and mantle heterogenities, Nature, 340, pp. 54–57.

    Article  Google Scholar 

  • Duffy, T. S., and Anderson, Don L., 1989, Seismic velocities in mantle minerals and the mineralogy of the upper mantle, J. Geophys. Res., 94, pp. 1895–1912.

    Article  Google Scholar 

  • Dziewonski, A.M., and Anderson, Don L., 1981, Preliminary reference Earth model: Phys. Earth Planet Inter., 25, pp. 297–356.

    Article  Google Scholar 

  • Gaffney, E. S., and Anderson, Don L., 1973, The effect of low-spin Fe on the composition of the lower mantle: Jour. Geophys. Res., 78, no. 29, pp. 7005–7014.

    Article  Google Scholar 

  • Grand, S. P., and Helmberger, D. V., 1984, Upper mantle shear structure of North America, Geophys. J. R. asrystron. Soc., 76, pp. 399–438.

    Article  Google Scholar 

  • Gwanmesia, G. D., Rigden, S., Jackson, I., and Liebermann, 1990, Elasticity of the β phase of Mg2SiO4 to 3 GPa, EOS, p. 525.

    Google Scholar 

  • Helmberger, D. V. and Engen, G. R., 1974, Upper mantle shear structure, J. Geophys. Res., 79, pp. 4017–4028.

    Article  Google Scholar 

  • Ibrahim, A. K., and Nuttli, O. W., 1967, Travel-time curves and upper mantle structure from long-period S waves, Bull. Seism. Soc. Am., 57, 1063–1092.

    Google Scholar 

  • Irifune, T., and Ringwood, A. E., 1987, Phase transformations in primitive MORB and pyrolite compositions to 25 GPa and some geophysical implications. In M. H. Manghnani and Y. Syono (Editors), High Pressure Research in Mineral Physics. Am. Geophys. Union, Washington, DC. pp. 231–242.

    Google Scholar 

  • Irifune, T. and Ringwood, A. E., 1987, Phase transformations in a harzburgite composition to 26 GPa, Earth Planet. Sci. Lett., 86, pp. 365–376.

    Article  Google Scholar 

  • Jeanloz, R., 1981, Majorite, J. Geophys. Res., 86, pp. 6171–6179.

    Article  Google Scholar 

  • Jeanloz, R., and Thompson, A. B., 1983, Phase transitions and mantle discontinuities, Rev. Geophys., 21, 51–74.

    Article  Google Scholar 

  • Jeffreys, H., 1936, The structure of the Earth down to the 20° discontinuity, Monthly Notices Roy. Astro. Soc. Geophys. Supp., 3, pp. 401–422.

    Article  Google Scholar 

  • Julian, B. R., and Anderson, Don L., 1968, Travel times, apparent velocities and amplitudes of body waves: Seismo. Soc. America Bull., 58, no. 1, pp. 339–366.

    Google Scholar 

  • Karoto, S., 1989, Plasticity-crystal structure systematics in dense oxides, Phy. Earth Planet Int., 55, pp. 234–240.

    Article  Google Scholar 

  • Katsura, T. and Ito, E., 1989, The system Mg2Si04-Fe2Si04 at high pressure and temperatures, J. Geophys. Res., 94, pp. 15,663–15,670.

    Article  Google Scholar 

  • Kim, Y.-H., Ming, L. C., and Manghnani, M. H., 1989, A study of phase transformation in Hedenbergite to 40 GPa ~ 1200°C, Phys. Chem. Minerals, no. 16, pp. 757–762.

    Article  Google Scholar 

  • Lees, A., Bukowinski, M. S. T., and Jeanloz, R., 1983, Reflection properties of phase transition and composition change models of the 670 km discontinuity, J. Geophys. Res., 88, pp. 8145–8159.

    Article  Google Scholar 

  • Liebermann, R. C., Jackson, I., and Ringwood, A. E., 1977, Elasticity and phase equilibria of spinel disproportionation reactions, Geophys. J. R. Astro. Soc., 50, pp. 553–586.

    Article  Google Scholar 

  • Madon, M., Castex, J. and Peyronneau, J., 1989, A new alumnocalcic high-pressure phase as a possible host of calcium and aluminum in the lower mantle. Nature (London), v. 342, pp. 423–425.

    Article  Google Scholar 

  • Meijering, J. L. and Rooymans, C. J. M., 1958, On the olivine-spinel transition in the Earth’s mantle, Koninkl. Ned. Akad. Wetenschap. Proc. Ser. B61, pp. 333–344.

    Google Scholar 

  • Morgan, W. J., 1971, Convective plumes in the lower mantle, Nature, 230, pp. 42–43.

    Article  Google Scholar 

  • Nakanishi, I., and Anderson, Don L., 1984, Measurements of mantle wave velocities and inversion for lateral heterogeneity and anistropy-II.Analysis by the single-station method: Geophys. J. R. astr. Soc., v. 78, pp. 573–617.

    Article  Google Scholar 

  • Nataf, H-C., Nakanishi, I., and Anderson, Don L., 1986, Measurements of mantle wave velocities and inversion for lateral heterogeneities and anistropy, Part III: Inversion, Jour. Geophys. Res., v. 91, no. B7, pp. 7261–7307.

    Article  Google Scholar 

  • Navrotsky, A., 1980, Lower mantle phase transitions may generally have negative pressure-temperature slopes, Geophys. Res. Lett., 7, pp. 709–711.

    Article  Google Scholar 

  • Niazi, M., and Anderson, Don L., 1965, Upper mantle structure of western North America from apparent velocities of P waves: Jour. Geophys. Res., v. 70, no. 18, pp. 4633–4640

    Article  Google Scholar 

  • Richards, M. and Hager, B., 1988, The Earth’s geoid and the large scale structure of mantle convection in S.K. Runcorn (ed.) The Physics of Planets, John Wiley and Sons, Ltd. pp. 247–272.

    Google Scholar 

  • Ringwood, A.E., 1958, The constitution of the mantle, Geoch. et Cosmoch. Acta, no. 15, pp. 18–29.

    Article  Google Scholar 

  • Ringwood, A. E., 1969, Phase transformations in the mantle, Earth Planet. Sci. Lett., 5, pp. 401–412.

    Article  Google Scholar 

  • Ringwood, A. E., 1975, Composition and petrology of the Earth’s mantle, McGraw-Hill, New York, NY 618 p.

    Google Scholar 

  • Ringwood, A. E., 1982, Phase transformations and differentiation in subducted lithosphere-implications for mantle dynamics, basalt petrogenesis and crustal evolution: J. Geol., v. 90, pp. 611–643.

    Article  Google Scholar 

  • Ringwood, A. E., 1990, Slab-mantle interactions, Chem.-Geol., v. 82, pp. 187–207.

    Article  Google Scholar 

  • Ringwood, A. E. and Major, A., 1970, The system Mg2SiO4 -Fe2SiO4 at high pressure and temperature, Phys. Earth Planet. Int., 3, pp. 89–108.

    Article  Google Scholar 

  • Ruff, L. J., and Anderson, Don L., 1980, Core formation, evolution, and convection: A geophysical model: Phys. Earth and Planet Inter., v. 21, pp. 181–201.

    Article  Google Scholar 

  • Schubert, G., Yuen, D., and Turcotte, D., 1975, Role of phase transitions in a dynamic mantle, Geophys. J. R. astro. Soc, 42, pp. 705–735.

    Google Scholar 

  • Wasserburg, G. J., and DePaolo, D. J., 1979, Models of Earth structure inferred from Nd and Sr isotopic abundances, Proc. Nat. Acad. Sci., U.S.A. 76, pp. 3594–3598.

    Article  Google Scholar 

  • Weidner, D. J., 1986, Mantle model based on measured physical properites of minerals, in Chemistry and Physics of the Terrestrial Planets, ed. S. K. Saxena, pp. 251–274, Springer=Verlag, NY 1986.

    Chapter  Google Scholar 

  • Weidner, D. J., Sawamoto, H., and Sasaki, S., 1984, Single-crystal elastic properties of the spinel phase of Mg2Si04, J. Geophys. Res., 89, pp. 7852–7859.

    Article  Google Scholar 

  • Whitcomb, J. H., and Anderson, Don L., 1970, Reflections of P’P’ seismic waves from discontinuities in the mantle: Jour. Geophys. Research, v. 75, no. 29, pp. 5713–5728.

    Article  Google Scholar 

  • Zhou, H-W., and Anderson, Don L., 1989, Search for deep slabs in the Northwest Pacific mantle, Proc. of the N.A.S., U.S.A., 86, pp. 8602–8608.

    Article  Google Scholar 

  • Zhou, H-W, Anderson, Don L., and Clayton, R.W., 1990, Modeling of residual spheres for subduction zone earthquakes. I. Apparent slab penetration signatures in the NW Pacific caused by deep diffuse mantle anomalies, J. Geophys. Res., 95, pp. 6799–6827.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Anderson, D.L. (1991). Chemical Boundaries in the Mantle. In: Sabadini, R., Lambeck, K., Boschi, E. (eds) Glacial Isostasy, Sea-Level and Mantle Rheology. NATO ASI Series, vol 334. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3374-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3374-6_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5492-8

  • Online ISBN: 978-94-011-3374-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics