Skip to main content

Amagmatic Extension and Tectonic Denudation in the Kizildağ Ophiolite, Southern Turkey: Implications for the Evolution of Neotethyan Oceanic Crust

  • Conference paper
Ophiolite Genesis and Evolution of the Oceanic Lithosphere

Part of the book series: Petrology and Structural Geology ((PESG,volume 5))

Abstract

The Cretaceous Kizildag ophiolite in southern Turkey represents a remnant of oceanic lithosphere formed in a southern strand of the Mesozoic Neotethys. The northeast-southwest trending ophiolite complex consists, from bottom to top, of serpentinized peridotites, cumulate and isotropic gabbros, sheeted dikes, and massive and pillow lava flows. The well-preserved sheeted dike complex and underlying plutonic rocks are best exposed in a topographically and structurally defined narrow graben on the southeastern flank of a laterally extensive antiform the core of which is an axial high of serpentinized peridotites. High-angle normal faults associated with local horst-graben structures and low-angle normal faults associated with rotated blocks are common within the sheeted dike complex and are reminiscent of spreading related structures at slow-spreading ridge segments. The fault contact between sheared gabbros and serpentinized peridotites dips away from peridotites and beneath gabbros in a fashion similar to detachment surfaces documented in several other ophiolite complexes and in modern oceanic crust. The extrusive sequence of the ophiolite is commonly underlain by serpentinite and gabbro and includes highly tilted massive and pillow lavas locally intruded by sheeted and isolated dikes. These structures and contact relationships in the Kizildag ophiolite are atypical of a characteristic ophiolite template and are interpreted to have resulted from a period of tectonic extension and denudation following magmatic construction of ophiolitic crust. A low-angle fault dipping southeast (in present coordinates) toward the axial graben (inferred spreading axis) is interpreted to have accommodated tectonic extension at crustal levels and uplift and exposure of upper mantle rocks. This postulated master normal fault is locally preserved on the northwest and southeast flanks of the antiform, which probably developed during isostatic rebound of upper mantle rocks as a result of excessive serpentinization and diapiric activity during and after displacement of oceanic crust from its original spreading environment. We envision a model of asymmetric exten-sion, analogous to that suggested for magma starved segments of the Mid-Atlantic Ridge around 23°N latitude. The geometry of the inferred asymmetric extension was parallel to an extensional shear zone that may have cut through the entire lithosphere of the northern edge of Arabia resulting in continental break-up in Late Triassic time. The Kizildag ophiolite represents a fragment of a Neotethyan oceanic spreading center that was subsequently emplaced onto the passive margin of Arabia possibly by conversion of a ridge-parallel normal fault to a thrust fault (incipient subduction zone?) as a result of a change in relative plate motion in late Cretaceous time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boillot, G., Recq, M., Winterer, E. L., Meyer, A. W., Applegate, J., Baltuck, M., Bergen, J. A., Comas, M. C., Davies, T. A., Dunham, K., Evans, C. A., Girardeau, J., Goldberg, G., Haggerty, J., Jansa, L. F., Johnson, J. A., Kasahara, J., Loreau, J. P., Luna-Sierra, E., Moullade, M., Ogg, T., Sarti, M., Thurow, J., and Williamson, M.. 1987. Tectonic denudation of the upper mantle along passive margins: a model based on drilling results (ODP leg 103, western Galicia margin, Spain)., Tectonophysics, 132: 335–342.

    Article  Google Scholar 

  • Cann, J. R., 1974. A model for oceanic crust developed., Roy. Astr. Soc. Geophys. Jour., 39: 169–187.

    Article  Google Scholar 

  • Çoğulu, E., Delaloye, M., Vuagnat, M., and Wagner, J.-J., 1975. Some geochemical, geochronological and petrophysical data on the ophiolitic massif from the Kizil Dağ, Hatay, Turkey., C. r. Séances Soc. Phys. Hist. nat. Genève, 10: 141–150.

    Google Scholar 

  • Coleman, R. G., 1971. Plate tectonic emplacement of upper mantle peridotites along continental edges., Jour. Geophys. Res., 76: 1212–1222.

    Google Scholar 

  • Delaloye, M., Vuagnat, M., and Wagner, J.-J., 1977. K-Ar ages from the Kizil Dağ ophiolite complex (Hatay, Turkey) and their interpretation. In: B. Biju-Duval and L. Montadert (Eds.), The Structural History of the Mediterranean Basins. Editions Technip, Paris, pp. 73–77.

    Google Scholar 

  • Delaloye, M. and Desmet, A., 1979. Nouvelles données radiometriques sur les pillow-lavas du Troodos (Chypre). Paris, Académie des Sciences Comptes Rendus, 288: 461–464.

    Google Scholar 

  • Delaloye, M. and Wagner, J.-J., 1984. Ophiolites and volcanic activity near the western edge of the Arabian plate. In: J.F. Dixon and A.H.F. Robertson (Eds). The Geological Evolution of the Eastern Mediterranean., Geol. Soc. London Spec. Pub. 17: 225–233.

    Google Scholar 

  • Desmet, A., Lapierre, H., Rocci, G., Gagny, Cl., Parrot, J.F., and Delaloye. M.. 1978. Constitution and significance of the Troodos sheeted complex.. Nature. 273: 527–530.

    Article  Google Scholar 

  • Detrick, R., Buhl, P., Mutter, J., Vera, E., Orcutt, J.. Madsen. J., and Brocher. T., 1987. Multichannel seismic imaging of magma chamber along the East Pacific Rise.. Nature. 326: 35–41.

    Article  Google Scholar 

  • Dewey, J. F. and Bird, J. M., 1971. Origin and emplacement of the ophiolite suite: Appalachian ophiolites in Newfoundland. Jour. Geophys. Res., 76: 3179–3206.

    Article  Google Scholar 

  • Dewey, J. F. and Kidd, W. S. F., 1977. Geometry of plate accretion.. Geol. Soc. America Bull., 88: 960–968.

    Article  Google Scholar 

  • Dilek, Y. and Moores, E. M., 1985. Structure, petrology, and origin of Kizil Dagh ophiolite. southern Turkey: Comparison with Troodos., EOS Transactions, American Geophys. Union, 66: 1129.

    Google Scholar 

  • Dilek, Y. and Moores, E. M., 1990. Regional tectonics of the eastern Mediterranean ophiolites. In: J. Malpas, E. M. Moores, A. Panayiotou, and C. Xenophontos (Eds), Ophiolites. Oceanic Crustal Analogues, Proceedings of the Symposium “Troodos 1987’, The Geological Survey Department, Nicosia, Cyprus, 295–309.

    Google Scholar 

  • Dubertret, L., 1955. Géologie des roches vertes du nort-ouest de la Syrie et du Hatay (Turquie). Notes Mém. Moyen-Orient 6, 227 p.

    Google Scholar 

  • Erendil, M., 1984. Petrology and structure of the upper crustal units of the Kizildağ ophiolite. In: O. Tekeli and M.C. Göncüoğlu (Eds), Geology of the Taurus Belt, Proceedings International Symposium, Turkey 1983, 269–284.

    Google Scholar 

  • Gass, LG., 1967. The ultramafic volcanic assemblage of the Troodos Massif, Cyprus. In: Ultramafic and Related rocks. John Wiley, New York, pp. 121–134.

    Google Scholar 

  • Harper, G. D., 1988. Episodic magma chambers and amagmatic extension in the Josephine ophiolite., Geology, 16: 831–834.

    Article  Google Scholar 

  • Juteau, T., Nicolas, A., Duhessy, J., Fruchard, J.C., and Bouchez, J.L., 1977. Structural relationships in the Antalya ophiolite complex, Turkey: possible model for an oceanic ridge., Geol. Soc. America Bull., 88: 1740–1748.

    Article  Google Scholar 

  • Karson, J. A., 1990. Seafloor spreading on the Mid-Atlantic Ridge: implications for the structure of ophiolites and oceanic lithosphere produced in slow-spreading environments. In: J. Malpas, E.M. Moores, A. Panayiotou, and C. Xenophontos (Eds), Ophiolites, Oceanic Crustal Analogues, Proceedings of the Symposium “Troodos 1987”, The Geological Survey Department, Nicosia, Cyprus, 547–556.

    Google Scholar 

  • Laurent, R., Delaloye, M., Vuagnat, M., and Wagner, J.-J., 1980. Composition of parental basaltic magma in ophiolites. In: A. Panayiotou (Ed), Ophiolites, Proceedings International Symposium, Cyprus 1979, pp. 172–182.

    Google Scholar 

  • Lemoine, M., Tricart, P., and Boillot, G., 1987. Ultramafic and gabbroic ocean floor of the Ligurian Tethys (Alps, Corsica, Appennines): In search of a genetic model., Geology, 15: 622–625.

    Article  Google Scholar 

  • Macdonald, K. C., 1982. Mid-Ocean Ridges: Fine scale tectonics, volcanic and hydrothermal processes within the plate boundary zone., Ann. Rev. Earth Planet. Sci., 10: 155–190.

    Article  Google Scholar 

  • Moores, E. M. and Vine, F. J., 1971. Troodos massif, Cyprus and other ophiolites as oceanic crust: Evaluation and implications., Phil. Trans. Roy. Soc. London, Ser. A, 268: 443–466.

    Article  Google Scholar 

  • Mukasa, S.B. and Ludden, J.N., 1987. Uranium-Lead isotopic ages of plagiogranites from the Troodos ophiolite, Cyprus, and their tectonic significance., Geology, 15: 825–828.

    Article  Google Scholar 

  • Pallister, J. S. and Hopson, C. A., 1981. Samail ophiolite plutonic suite: Field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber., Jour. Geophys. Res.. 86: 2593–2644.

    Article  Google Scholar 

  • Parrot, J.-F., 1980, The Baër-Bassit (northwestern Syria) ophiolitic area., Ofioliti, 2: 279–295.

    Google Scholar 

  • Piskin, O., Delaloye, M., Selçuk, H., and Wagner, J.-J., 1986. Guide to Hatay geology (SE-Turkey)., Ofioliti, 11: 87–104.

    Google Scholar 

  • Purdy, G. M. and Detrick, R. S., 1986. Crustal structure of the Mid-Atlantic Ridge at 23°N from seismic refraction studies., Jour. Geophys. Res., 91: 3739–3762.

    Article  Google Scholar 

  • Reuber, I., 1984. Mylonitic ductile shear zones within teetonites and cumulates as evidence for an oceanic transform fault in the Antalya ophiolite, SW Turkey. In: J.F. Dixon and A.H.F. Robertson (Eds), The Geological Evolution of the Eastern Mediterranean., Geol. Soc. London Spec. Pub. 17: 319–334.

    Google Scholar 

  • Ricou, L.E., 1971. Le croissant ophiolitique péri-arabe, une ceinture de nappes mises en place au Crétacé superieur., Rev. Géogr. phys. Géolo. dyn., 18: 327–349.

    Google Scholar 

  • Ricou, L.E., Argyriadis, I., and Marcoux, J., 1975. L’axe calcaire du Taurus, un alignement de fenêtres arabo-africaines sous des nappes radiolaritiques, ophiolitiques et métamorphiques., Bull. Soc. géol. France, 17: 1024–1043.

    Google Scholar 

  • Robertson, A. H. F., 1986. Geochemistry and tectonic implications of metalliferous and volcaniclastic sedimentary rocks associated with Late Cretaceous ophiolitic extrusives in the Hatay area, southern Turkey., Ofioliti, 11: 121–140.

    Google Scholar 

  • Selçuk, H., 1981. Etude géologique de la partie méridionale du Hatay (Turquie). Published Ph.D. thesis (No. 1997), Université de Génève, 116 p.

    Google Scholar 

  • Sengör, A. M. C. and Yilmaz, Y., 1981. Tethyan evolution of Turkey: a plate tectonic approach.. Tectonophysics, 75: 181–241.

    Article  Google Scholar 

  • Staudigel, H., Gillis, K., and Duncan, R., 1986. K/Ar and Rb/Sr ages of celadonites from the Troodos ophiolite, Cyprus., Geology, 14: 72–75.

    Article  Google Scholar 

  • Tiezzi, L. J. and Scott, R. B., 1980. Crystal fractionation in a cumulate gabbro. Mid-Atlantic Ridge at 26°N., Jour. Geophys. Res., 85: 5483–5454.

    Article  Google Scholar 

  • Tinkler, C., Wagner, J.-J., Delaloye, M., and Selçuk, H.. 1981. Tectonic history of the Hatay ophiolites (south Turkey) and their relation with the Dead Sea rift.. Tectonophysics. 72: 23–41.

    Article  Google Scholar 

  • Varga, R. J. and Moores, E. M., 1985. Spreading structure of the Troodos ophiolite, Cyprus., Geology, 13: 846–850.

    Article  Google Scholar 

  • Wernicke, B., 1985. Uniform-sense normal simple shear of the continental lithosphere., Canad. Jour. Earth Sci., 22: 108–125.

    Article  Google Scholar 

  • Whitechurch, H., Juteau, T., and Montigny, R., 1984. Role of the eastern Mediterranean ophiolites (Turkey, Syria, Cyprus) in the history of the Neo-Tethys. In: J.F. Dixon and A.H.F. Robertson (Eds), The Geological Evolution of the Eastern Mediterranean., Geol. Soc. London Spec. Pub. 17: 301–317.

    Google Scholar 

  • Yilmaz, P.O., 1984. Fossil and K-Ar data for the age of the Antalya complex. In: J.F. Dixon and A.H.F. Robertson (Eds), The Geological Evolution of the Eastern Mediterranean., Geol. Soc. London Spec. Pub. 17: 335–347.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tj. Peters A. Nicolas R. G. Coleman

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Dilek, Y., Moores, E.M., Delaloye, M., Karson, J.A. (1991). Amagmatic Extension and Tectonic Denudation in the Kizildağ Ophiolite, Southern Turkey: Implications for the Evolution of Neotethyan Oceanic Crust. In: Peters, T., Nicolas, A., Coleman, R.G. (eds) Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Petrology and Structural Geology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3358-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3358-6_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5484-3

  • Online ISBN: 978-94-011-3358-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics