Predictive Assays for Drug and Radiation Resistance

  • Larry M. Weisenthal
Part of the Developments in Oncology book series (DION, volume 64)


Numerous methods exist to measure drug and radiation resistance in cell culture. Each method has committed proponents, but no method has been widely accepted for clinical application. Virtually all of the methods are based on sound biologic principles and are capable, in my view, of providing useful clinical information. However, I have also observed that even experienced investigators (and grant reviewers) tend to have unrealistic expectations and an incomplete understanding of the biologic and statistical principles relating to these assays. My message to investigators and reviewers alike will be to (1) understand the principles, (2) have realistic expectations (i.e. look to use the information as a tool for a clinical improvement which may fall short of a revolutionary breakthrough), (3) realize that calibration of these assays for clinical application is a very slow process involving considerable trial and error, and (4) demand convincing validation, but do not erect insurmountable validation barriers which prevent utilization of the assays as a tool for clinical improvement. While I am not a radiobiologist, I will also attempt to address the issue of cell culture assays for radiation resistance. Other reviews relating to assays for both radiation (Peters et al., 1984; Peters et al., 1988; Elkind, 1988) and drug resistance (Weisenthal and Lippman, 1985; Weisenthal, 1981; Von Hoff and Weisenthal, 1980; Taetle and Koziol, 1985; Von Hoff, 1987; McGuire et al., 1988; Weisenthal et al., 1988; Von Hoff, 1989; Ichihashi, 1989; Von Hoff, 1988; Von Hoff, 1990; Dendy and Hill, 1983; Hofmann et al., 1984) are available elsewhere. In vivo assays, such as the subrenal capsule assay (Bogden et al., 1988) and nude mouse xenograft assays (Guichard, 1989; Leonetti et al., 1989;Mattern et al., 1988;Bamberg et al., 1988; Houghton and Houghton, 1983) are beyond the scope of this discussion.


Drug Resistance Drug Sensitivity Clonogenic Assay Chemosensitivity Testing Cell Culture Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ajani, J.A., Baker, F.L., Spitzer, G., Kelly, A., Brock, W., Tomasovic, B., Singletary S.E., McMurtrey, M. and Plager, C. (1987). Comparison between clinical response and in vitro drug sensitivity of primary human tumors in the adhesive tumor cell culture system. J Clin. Oncol. 5, 1912–1921.PubMedGoogle Scholar
  2. Anai, H., Maehara, Y., Kusumoto, H. and Sugimachi, K. (1987). Comparison of the chemosensitivity of human neoplastic tissues between succinate dehydrogenase inhibition test and ATP assay [LETTER]. Clin Chim. Acta 166, 107–119.PubMedGoogle Scholar
  3. Arai, T. and Suzuki, M. (1956). A rapid agar dilution technique for the estimation of antitumor cell activity. J. Antibiot. (Tokyo) 9, 169.Google Scholar
  4. Ardarlan, B., MacDonald, J., Cooney, D. et al. (1981). The potential for clinical applications of in vitro assays for predicting 5-FU sensitivity in man. Cancer Treat. Rep. 65, 57–61.Google Scholar
  5. Arenzana-Seisdedos, F., Mogensen, S.C., Vuillier, F., Fiers, W. and Virelizier, J.-L. (1988). Autocrine secretion of tumor necrosis factor under the influence of interferon-gamma amplifies HLA-DR gene induction in human monocytes. Proc. Natl. Acad. Sci. USA 85, 6087–6091.PubMedGoogle Scholar
  6. Arteaga, C.L., Forseth, B.J., Clark, G.M. and Von Hoff, D.D. (1987). A radiometric method for evaluation of chemotherapy sensitivity: results of screening a panel of human breast cancer cell lines. Cancer Res. 47, 6248–6253.PubMedGoogle Scholar
  7. Avramis, V.I., Mecum, R.A., Nyce, J., Steele, D.A. and Holcenberg, J.S. (1989). Pharmacodynamic and DNA methylation studies of high-dose 1-beta-d-arabinofuranosyl cytosine before and after in vivo 5-azacytidine treatment in pediatric patients with refractory acute lymphocytic leukemia. Cancer Chemother. Pharmacol. 24, 203–210.PubMedGoogle Scholar
  8. Baker, F.L., Spitzer, G., Ajani, J.A. and Brock, W.A. (1988). Drug and radiation sensitivity testing of primary human tumor cells using the adhesive-tumor-cell culture system (ATCCS). Prog. Clin. Biol. Res. 276, 105–117.PubMedGoogle Scholar
  9. Bamberg, M., Budach, V., Stuschke, M., Gerhard, L. and Streffer, C. (1988). Heterotransplantation of a human glioma and brain metastases in the athymic nude mouse-a preclinical model for radiation oncology. 1. Basic principles and methodology. Strahlenther. Onkol. 164, 235–243.PubMedGoogle Scholar
  10. Batista, G., Tulpule, A. and Sinha, B. (1986). Over expression of a novel anionic glutathione transferase in multidrug resistant human breast cancer cells. J. Biol. Chem. 261, 15544–15549.Google Scholar
  11. Beck, W.T., Cirtain, M.C., Danks, M.K., Felsted, R.L., Safa, A.R., Wolverton, J.S., Suttle, D.P. and Trent, J.M. (1987). Pharmacological, molecular, and cytogenetic analysis of ‘atypical’ multidrug-resistant human leukemic cells. Cancer Res. 47, 5455–5460.PubMedGoogle Scholar
  12. Beksac, M., Kansu, E., Kars, A., Ibrahimoglu, Z. and Firat, D. (1988). A rapid drug sensitivity assay for neoplasmatic cells. Med Oncol. Tumor. Pharmacother. 5, 253–257.PubMedGoogle Scholar
  13. Bell, R.S., Bourret, L.A., Bell, D.F., Gebhardt, M.C., Rosenberg, A., Berrey, H.B., Treadwell, B.V., Tomford, W.W. and Mankin, H.J. (1988). Evaluation of fluorescein diacetate for flow cytometric determination of cell viability in orthopaedic research. J. Orthop. Res. 6, 467–474.PubMedGoogle Scholar
  14. Bellamy, W.T., Dalton, W.S., Kailey, J.M., Gleason, M.C., McCloskey, T.M., Dorr, R.T. and Alberts, D.S. (1988). Verapamil reversal of doxorubicin resistance in multidrug-resistant human myeloma cells and association with drug accumulation and DNA damage. Cancer Res. 48, 6365–6370.PubMedGoogle Scholar
  15. Benet, L.Z. and Sheiner, L.B. (1985). Design and optimization of dosage regimens; pharmacokinetic data. In Goodman and Gilman’s: The Pharmacological Basis of Therapeutics. Eds A.G. Gilman, L.S. Goodman, T.W. Rall and F. Murad. New York, N.Y.: Macmillan Publishing Company, pp. 1663–1733.Google Scholar
  16. Berens, M.E., Giblin, J.R., Dougherty, D.V., Hoifodt, H.K., Tveit, K. and Rosenblum, M.L. (1988). Comparison of in vitro cloning assays for drug sensitivity testing of human brain tumours. Br. J Neurosurg. 2, 227–234.PubMedGoogle Scholar
  17. Berger, N.A. (1985). Poly-(ADP-ribose) in the cellular response to DNA damage. Radiat.Res. 101, 4–15.PubMedGoogle Scholar
  18. Bernabei, P.A., Santini, V., Silvestro, L., Dal Pozzo, O., Bezzini, R., Viano, I., Gattei, V., Saccardi, R. and Rossi-Ferrini, P. (1989). In vitro chemosensitivity testing of leukemic cells: development of a semiautomated colorimetric assay. Hematol. Oncol. 7, 243–253.PubMedGoogle Scholar
  19. Berry, R.J., Laing, A.H. and Wells, J. (1975). Fresh explant cultures of human tumors in vitro and the assessment of sensitivity to cytotoxic chemotherapy. Br. J. Cancer 31, 218–227.PubMedGoogle Scholar
  20. Bertelsen, C.A., Sondak, V.K., Mann, B.D., Korn, E.L. and Kern, D.H. (1984). Chemosensitivity testing of human solid tumors. A review of 1582 assays with 258 clinical correlations. Cancer 53, 1240–1245 1984.PubMedGoogle Scholar
  21. Bickis, I.J, Henderson, I.W.D. and Honess, D.J. (1966). Biochemical studies of human tumors. II. In vitro estimation of individual tumor sensitivity to anticancer agents. Cancer 19, 103–113.PubMedGoogle Scholar
  22. Bilik, R., Mor, C., Hazaz, B. and Moroz, C. (1989). Characterization of T-lymphocyte subpopulations infiltrating primary breast cancer. Cancer Immunol. Immunother. 28, 143–147.PubMedGoogle Scholar
  23. Bird, M.C., Bosanquet, A.G. and Gilby, E.D. (1985). In vitro determination of tumour chemosensitivity in haematological malignancies. Hematol. Oncol. 3, 1–10.PubMedGoogle Scholar
  24. Bird, M.C., Bosanquet, A.G., Forskitt, S. and Gilby, E.D. (1986). Semi-micro adaptation of a 4-day differential staining cytotoxicity (DiSC) assay for determining the in-vitro chemosensitivity of haematological malignancies. Leuk. Res. 10, 445–449.PubMedGoogle Scholar
  25. Bird, M.C., Bosanquet, A.G., Forskitt, S. and Gilby, E.D. (1988). Long-term comparison of results of a drug sensitivity assay in vitro with patient response in lymphatic neoplasms. Cancer 61, 1104–1109.PubMedGoogle Scholar
  26. Black, M.M. and Speer, F.D. (1954). Further observations on the effects of cancer chemotherapeutic agents on the in vitro dehydrogenase activity of cancer tissue. J. Natl. Cancer Inst. 14, 1147–1158.PubMedGoogle Scholar
  27. Bogden, A.E., Cobb, W.R. and Lepage, D.J. (1988). The 6-day subrenal capsule assay (srca): its criticism, biology and review of assay/clinical correlations. Prog. Clin. Biol. Res. 276, 139–204.PubMedGoogle Scholar
  28. Bosanquet, A.G., Bird, M.C., Price, W.J. and Gilby, E.D. (1983). An assessment of a short-term tumour chemosensitivity assay in chronic lymphocytic leukaemia. Br. J. Cancer 47, 781–789.PubMedGoogle Scholar
  29. Bosanquet, A.G., Bird, M.C. and Gilby E.D. (1985). In vitro chemosensitivity in hematological tumors. Proc. Am. Assoc. Cancer. Res. 26, 465.Google Scholar
  30. Bosanquet, A.G. (1991). Correlations between therapeutic response of leukemias and in-vitro drug-sensitivity assay. Lancet 337, 711–714.PubMedGoogle Scholar
  31. Boyd, N.F. (1987). A guide to studies of diagnostic tests, prognosis and treatment. In: The Basic Science of Oncology. Eds I.F. Tannock and R.P. Hill. New York: Pergamon Press. pp. 358–373.Google Scholar
  32. Brock, W.A., Baker, F.L. and Peters, L.J. (1989). Radiosensitivity of human head and neck squamous cell carcinomas in primary culture and its potential as a predictive assay of tumor radiocurability. Int J Radiat. Biol. 56, 751–760.PubMedGoogle Scholar
  33. Broxterman, H.J., Pinedo, H.M., Kuiper, C.M., Van der Hoeven, J.J.M., De Lange, P., Quak, J.J., Scheper, R.J., Keizer, H.G., Schuurhuis, G.J. and Lankelma, J. (1989). Immunohistochemical detection of P-glycoprotein in human tumor cells with a low degree of drug resistance. Int. J. Cancer 43, 340–343.PubMedGoogle Scholar
  34. Burt, R.K., Garfield, S., Johnson, K. and Thorgeirsson, S.S. (1988). Transformation of rat liver epithelial cells with v-H-ras or v-raf causes expression of MDR-1, glutathione-S-transferase-P and increased resistance to cytotoxic chemicals. Carcinogenesis 9, 2329–2332.PubMedGoogle Scholar
  35. Cabanillas, F., Pathak, S., Grant, G., Hagemeister, F.B., McLaughlin, P., Swan, F., Rodriguez, M.A., Trujillo, J., Cork, A., Butler, J.J., Katz, R., Bourne, S. and Freireich, E.J. (1989). Refractoriness to chemotherapy and poor survival related to abnormalities of chromosomes 17 and 7 in lymphoma. Am. J. Med. 87, 167–172.PubMedGoogle Scholar
  36. Campling, B.G., Pym, J., Galbraith, P.R. and Cole, S.P. (1988). Use of the MTT assay for rapid determination of chemosensitivity of human leukemic blast cells. Leuk. Res. 12, 823–831.PubMedGoogle Scholar
  37. Carmichael, J., Degraff, F W.G., Gazdar, A.F., Minna, J.D. and Mitchell, J.B. (1987a). Evaluation of a tetrazolium-based semiautomatic colorimetric assay: assessment of radiosensitivity. Cancer Res. 47, 943–946.PubMedGoogle Scholar
  38. Carmichael, J., Degraff, W.G., Gazdar, A.F., Minna, J.D. and Mitchell, J.B. (1987b). Evaluation of a tetrazolium-based semiautomatic colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47, 936–942.PubMedGoogle Scholar
  39. Carmichael, J., Mitchell, J.B., Degraff, W.G., Gamson, J., Gazdar, A.F., Johnson, B.E., Glatstein, E. and Minna, J.D. (1988a). Chemosensitivity testing of human lung cancer cell lines using the MTT assay. Br. J Cancer. 57, 540–547.PubMedGoogle Scholar
  40. Carmichael, J., Mitchell, J.B., Friedman, N., Gazdar, A.F. and Russo, A. (1988b). Glutathione and related enzyme activity in human lung cancer cell lines. Br. J. Cancer 58, 437–440.PubMedGoogle Scholar
  41. Carmichael, J., Forrester, L.M., Lewis, A.D., Hayes, J.D., Hayes, P.C. and Wolf, C.R. (1988c). Glutathione S-transferase isoenzymes and glutathione peroxidase activity in normal and tumour samples from human lung. Carcinogenesis 9, 1617–1621.PubMedGoogle Scholar
  42. Carney, D.N. (1989). Growth factors for lung cancer. Biochem. Soc. Trans. 17, 592–594.Google Scholar
  43. Carson, D.A., Seto, S., Wasson, D.B. and Carrera, C.J. (1986). DNA strand breaks, NAD metabolism, and programmed cell death. Exp. Cell Res. 164, 273–281.PubMedGoogle Scholar
  44. Carstensen, H. (1983). [Predictive testing of cytostatics in ovarian cancer using Weisenthal’s method]. Lakartidningen. 80, 2812–2816.PubMedGoogle Scholar
  45. Chabner, B.A. (1982). Pharmacologic Principles of Cancer Treatment. Philadelphia: W.B. Saunders.Google Scholar
  46. Chabner, B.A. and Fojo, A. (1989). Multidrug resistance: P-glycoprotein and its allies-the elusive foes. J Natl. Cancer Inst. 81, 910–913.PubMedGoogle Scholar
  47. Chow, N.-W.L, Whang-Peng, J., Kao-Shan, C.-S., Tarn, M.F., Lai, H.-C.J. and Tu, C.-P.D. (1988). Human glutathione S-transferases. The Ha multigene family encodes products of different but overlapping substrate specificities. J. Biol. Chem. 263, 12797–12800.PubMedGoogle Scholar
  48. Dalton, W.S., Grogan, T.M., Meltzer, P.S., Scheper, R.J., Durie, B.G.M., Taylor, C.W., Miller, T.P. and Salmon, S.E. (1989). Drug-resistance in multiple myeloma and non-Hodgkin’s lymphoma: Detection of P-glycoprotein and potential circumvention by addition of verapamil to chemotherapy. J. Clin. Oncol. 7, 415–424.PubMedGoogle Scholar
  49. Defazio, A., Heneine, N., Musgrove, E.A. and Tattersall, M.H.N. (1989). Enumeration of 6-thioguanine-resistant tumour cells using flow cytometry and comparison with a microtitration cloning assay. Mutat. Res. 216, 57–64.PubMedGoogle Scholar
  50. Deffie, A.M., Alam, T., Seneviratne, C., Beenken, S.W., Batra, J.K., Shea, T.C., Henner, W.D. and Goldenberg, G.J. (1988). Multifactorial resistance to adriamycin: relationship of DNA repair, glutathione transferase activity, drug efflux, and P-glycoprotein in cloned cell lines of adriamycin-sensitive and-resistant P388 leukemia. Cancer Res. 48, 3595–3602.PubMedGoogle Scholar
  51. Dendy, P.P. and Hill, B.T. (1983). Human tumour drug sensitivity testing in vitro: techniques and clinical applications. New York, N.Y.: Academic Press. pp. 1–325.Google Scholar
  52. Deuchars, K.L. and Ling, V. (1989). P-glycoprotein and multidrug resistance in cancer chemotherapy. Semin. Oncol. 16, 156–165.PubMedGoogle Scholar
  53. Dickson, J.A. and Suzanger, M. (1976). In vitro sensitivity testing of human tumor slices to chemotherapeutic drugs-its place in cancer therapy. In: Human Tumors in Short Term Culture. Ed P.P. Dendy. London: Academic Press. pp. 107–138.Google Scholar
  54. Dipaolo, J.A. and Dowd, J.E. (1961) Evaluation of inhibition of human tumor tissue by cancer chemotherapeutic drugs with an in vitro test. J. Natl. Cancer Inst. 27, 807–815.PubMedGoogle Scholar
  55. Dipaolo, J.A. (1971). Analysis of an individual chemotherapy assay system. Natl. Cancer Inst. Monogr. 34, 240–245.PubMedGoogle Scholar
  56. Durkin, W.J., Ghanta, V.K., Balch, C.M., Davis, D.W. and Hiramoto, R.N. (1979). A methodological approach to the prediction of anticancer drug effect in humans. Cancer Res. 39, 402–407.PubMedGoogle Scholar
  57. Editorial (1982). Clonogenic assays for chemotherapeutic sensitivity of human tumors. Lancet 1, pp780-781.Google Scholar
  58. Einhorn, S., Fernberg, J.-O., Grandér, D. and Lewensohn, R. (1988). Interferon exerts a cytotoxic effect on primary human myeloma cells. Eur. J. Cancer Clin. Oncol. 24, 1505–1510.PubMedGoogle Scholar
  59. Elkind, M.M, Zimbrick, J.D. and Nygaard, O.F. (1984). Basic radiobiology. Cancer Treat. Symp. 1, 35–47.Google Scholar
  60. Elkind, M.M. (1988). The initial part of the survival curve: does it predict the outcome of fractionated radiotherapy. Radiat. Res. 114, 425–436.PubMedGoogle Scholar
  61. Ellwart, J.W., Kremer, J.-P. and Dürmer, P. (1988). Drug testing in established cell lines by flow cytometric vitality measurements versus clonogenic assay. Cancer Res. 48, 5722–5725.PubMedGoogle Scholar
  62. Fertil, B. and Malaise, E.P. (1981). Inherent cellular radiosensitivity as a basic concept for human tumor radiotherapy. Int J Radiat. Oncol. Biol. Phys. 7, 621–629.PubMedGoogle Scholar
  63. Fertil, B. and Malaise, E.P. (1985). Intrinsic radiosensitivity of human cell lines is correlated with radioresponsiveness of human tumors: analysis of 101 published survival curves. Int J Radiat. Oncol. Biol. Phys. 11, 1699–1707.PubMedGoogle Scholar
  64. Ford, C.H., Richardson, V.J. and Tsaltas, G. (1989). Comparison of tetrazolium colorimetric and [3H]-uridine assays for in vitro chemosensitivity testing. Cancer Chemother. Pharmacol. 24, 295–301.PubMedGoogle Scholar
  65. Freshney, R.I., Paul, J. and Kane, I.M. (1975). Assay of anticancer drugs in tissue culture: conditions affecting their ability to incorporate 3H-leucine after drug treatment. Br. J. Cancer 31, 89–99.PubMedGoogle Scholar
  66. Friedman, H.M., Loomis, L., Lane, V.G., Zarcone, D., and Glaubuger, D. (1987). A comparison study between two [3H]-thymidine radiolabel precursor uptake assays using human tumor cell lines for the evaluation of new drug screening (ABSTRACT). Proc AACR, Abstract number 1666.Google Scholar
  67. Friedman, H.M. and Glaubiger, D.L. (1982). Assessment of in vitro drug sensitivity of human tumor cells using [3H]-thymidine incorporation in a modified human tumor stem cell assay. Cancer Res. 42, 4683–4689.PubMedGoogle Scholar
  68. Fujita, M., Tanigawa, K., Fujita, F., Sakamoto, Y., Shimozuma, K., Kusuyama, T., Inaba, H. and Taguchi, T. (1989). [Evaluation of predictability of in vitro SDI assay in comparison with in vivo nude mouse assay]. Gan To.Kagaku.Ryoho. 16, 3435–3441.PubMedGoogle Scholar
  69. Funa, K., Dawson, N., Jewett, P.B., Agren, H., Ruckdeschel, J.C., Bunn, P.A. Jr. and Gazdar, A.F. (1986). Automated fluorescent analysis for drug-induced cytotoxicity assays. Cancer Treat. Rep. 70, 1147–1151.PubMedGoogle Scholar
  70. Gajewski, W., Fingert, H., Chen, Z. and Fuller, A. (1989). Clinical evaluation of fluorescent cytoprint assay (FCA) for chemosensitivity testing of gynecologic malignancies (MEETING ABSTRACT). Proc. Annu. Meet. Am. Soc. Clin. Oncol. 8, A642.Google Scholar
  71. Gazdar, A.F. (1989). Innovative chemotherapy; Xenografts and in vitro drug sensitivity testing. Chest 96 Suppl., 56S–59S.PubMedGoogle Scholar
  72. Gazdar, A.F., Steinberg, S.M., Russell, E.K., Linnoila, R.I., Oie, H.K., Ghosh, B.C. et al. (1990). Correlation of in vitro drug-sensitivity testing results with response to chemotherapy and survival in extensive-stage small cell lung cancer: a prospective clinical trial. J. Natl. Cancer Inst. 82, 117–123.PubMedGoogle Scholar
  73. Gerlach, J.H., Bell, D.R., Karakousis, C., Slocum, H.K., Kartner, N., Rustum, Y.M., Ling, V. and Baker, R.M. (1987). P-glycoprotein in human sarcoma: evidence for multidrug resistance. J Clin. Oncol. 5, 1452–1460.PubMedGoogle Scholar
  74. Goldstein, L.J., Galski, H., Fojo, A., Willingham, M., Lai, S.L., Gazdar, A., Pirker, R., Green, A., Crist, W., Brodeur, G.M. et al. (1989a). Expression of a multidrug resistance gene in human cancers. J Natl. Cancer Inst. 81, 116–124.PubMedGoogle Scholar
  75. Graziano, S.L., Mazid, R., Newman, N., Tatum, A., Oler, A., Mortimer, J.A., Gullo, J.J., Difino, S.M. and Scalzo, A.J. (1989). The use of neuroendocrine immunoperoxidase markers to predict chemotherapy response in patients with non-small cell lung cancer. J. Clin. Oncol. 7, 1398–1406.PubMedGoogle Scholar
  76. Greaves, M.F. and Lister, T.A. (1981). Prognostic importance of immulogic markers in adult lymphoblastic leukemia. N. Engl. J Med. 304, 119–120.PubMedGoogle Scholar
  77. Griswold, D.P., Schabel, F.M., Wilcox, W.S., Simpson-Herren, L. and Skipper, H.E. (1968). Success and failure in the treatment of solid tumors. 1. Effects of cyclophosphamide (NSC-26271) on primary and metastatic plasmacytoma in the hamster. Cancer Chemother. Rep. 52, 345–387.PubMedGoogle Scholar
  78. Guichard, M. (1989). Comparison of the radiobiological properties of human tumour xenografts and rodent tumours. Int J Radiat. Biol. 56, 583–586.PubMedGoogle Scholar
  79. Guichard, M., Weichselbaum, R.R., Little, J.B. and Malaise, E.P. (1984). Potentially lethal damage repair as a possible determinant of human tumour radiosensitivity. Radiother. Oncol. 1, 263–293.PubMedGoogle Scholar
  80. Hamburger, A.W. (1989). Cytokine regulation of the growth of human tumor clonogenic cells. Proc AACR 30, 650–651.Google Scholar
  81. Harris, A.L. and Grahame-Smith, D.G. (1982). The relationship of ara-c metabolism in vitro to therapeutic response in acute myeloid leukemia. Cancer Chemother. Pharmacol. 9, 30–35.PubMedGoogle Scholar
  82. Head, J.F., Paolini, J.H. and Foster, L.B. (1989). Growth of normal cells in the adhesive tumor cell culture system. Proc AACR 30, 29. (Abstract)Google Scholar
  83. Higashihara, J., Saito, T., Berens, M.E. and Welander, C.E. (1988). Effects of scheduling and ascites-associated macrophages on combined antiproliferative activity of alpha-2b interferon and gamma-interferon in a clonogenic assay. Cancer Chemother.Pharmacol. 22, 215–222.PubMedGoogle Scholar
  84. Hildebrand-Zanki, S.U. and Kern, D.H. (1987). In vitro assays for new drug screening: comparison of a thymidine incorporation assay with the human tumor colony-forming assay. Int J Cell. Cloning. 5, 421–431.PubMedGoogle Scholar
  85. Hills, C.A., Kelland, L.R., Abel, G., Siracky, J., Wilson, A.P. and Harrap, K.R. (1989). Biological properties of ten human ovarian carcinoma cell lines: calibration in vitro against four platinum complexes. Br. J. Cancer 59, 527–534.PubMedGoogle Scholar
  86. Hofmann, V., Berens, M.E. and Martz, G. (1984). Predictive drug testing on human tumor cells. New York, New York: Springer-Verlag (Recent Results in Cancer Research, V.94). pp. 1–282.Google Scholar
  87. Holmes, E.C. (1988). Current status of adjuvant chemotherapy in the treatment of non-small cell lung cancer. In: Important advances in oncology 1988. Eds V.T. Jr. DeVita, S. Hellman and S.A. Rosenberg. Philadelphia: J.B. Lippincott Company. pp. 259–272.Google Scholar
  88. Houghton, J.A. and Houghton, P.J. (1983). The xenograft as an intermediate model system. In: Human Tumour Drug Sensitivity Testing in vitro. Eds P.P. Dendy and B.T. Hill. New York, N.Y.: Academic Press. pp. 179–199.Google Scholar
  89. Houghton, J.A., Maroda, S.J., Phillips, J.O. et al. (1981). Biochemical determinants of responsiveness to 5-fluorouracil and its derivatives in xenografts of human colorectal adenocarcinomas in mice. Cancer Res. 41, 144–149.PubMedGoogle Scholar
  90. Ichihashi, H. (1989). [Assessment of chemosensitivity tests of human tumor cells]. Gan To. Kagaku. Ryoho. 16, 923–931.PubMedGoogle Scholar
  91. Ito, Y., Tanimoto, M., Kumazawa, T., Okumura, M., Morishima, Y., Ohno, R. and Saito, H. (1989). Increased P-glycoprotein expression and multidrug-resistant gene (mdrl) amplification are infrequently found in fresh acute leukemia cells. Sequential analysis of 15 cases at initial presentation and relapsed stage. Cancer 63, 1534–1538.PubMedGoogle Scholar
  92. Iwamoto, G.K., Monick, M.M., Burmeister, L.F. and Hunninghake, G.W. (1989). Interleukin 1 release by human alveolar macrophages and blood monocytes. Am. J. Physiol. 256, C1012–C1015.PubMedGoogle Scholar
  93. Jones, C.A., Tsukamoto, T., O’Brien, P.C., Uhl, C.B., Alley, M.C. and Lieber, M.M (1985). Soft agarose culture human tumour colony forming assay for drug sensitivity testing: [3H]-thymidine incorporation vs. colony counting. Br. J. Cancer 52, 303–310.PubMedGoogle Scholar
  94. Kakehi, Y., Kanamaru, H., Yoshida, O., Ohkubo, H., Nakanishi, S., Gottesman, M.M. and Pastan, I. (1988). Measurement of multidrug-resistance messenger RNA in urogenital cancers; elevated expression in renal cell carcinoma is associated with intrinsic drug resistance. J Urol. 139, 862–865.PubMedGoogle Scholar
  95. Kal, H.B. and Barendsen, G.W. (1983). In vitro methods for predicting response. In: Cancer Treatment: End-Point Evaluation. Ed B.A. Stoll. New York: John Wiley and Sons Ltd. pp. 321–339.Google Scholar
  96. Kavanagh, T.J., Martin, G.M., Livesey, J.C. and Rabinovitch, P.S. (1988). Direct evidence of intercellular sharing of glutathione via metabolic cooperation. J. Cell. Physiol. 137, 353–359.PubMedGoogle Scholar
  97. Keizer, H.G., Van Rijn, J., Pinedo, H.M. and Joenje, H. (1988). Effect of endogenous glutathione, superoxide dismutases, catalase, and glutathione peroxidase on adriamycin tolerance of Chinese hamster ovary cells. Cancer Res. 48, 4493–4497.PubMedGoogle Scholar
  98. Keizer, H.G., Schuurhuis, G.J., Broxterman, H.J., Lankelma, J., Schoonen, W.G., Van Rijn, J., Pinedo, H.M. and Joenje, H. (1989). Correlation of multidrug resistance with decreased drug accumulation, altered subcellular drug distribution, and increased P-glycoprotein expression in cultured SW-1573 human lung tumor cells. Cancer Res. 49, 2988–2993.PubMedGoogle Scholar
  99. Kelland, L.R. and Steel, G.G. (1988). Differences in radiation response among human cervix carcinoma cell lines. Radiother. Oncol. 13, 225–232.PubMedGoogle Scholar
  100. Kern D.H. and Weisenthal L.M. 1990. Highly-specific prediction of antineoplastic drug resistance with an in vitro assay utilizing suprapharmacologic drug concentrations. J.Natl. Cancer Inst. 82582–588Google Scholar
  101. Kern, D.H., Drogemuller, C.R., Kennedy, M.C., Hildebrand-Zanki, S.U., Tanigawa, N. and Sondak, V.K. (1985). Development of a miniaturized, improved nucleic acid-precursor incorporation assay for chemosensitivity testing of human solid tumors. Cancer Res. 45, 5436–5441.PubMedGoogle Scholar
  102. Kern, D.H., Sondak, V.K., Morgan, C.R. and Hildebrand-Zanki, S.U. (1987). Clinical application of the thymidine incorporation assay. Ann. Clin. Lab. Sci. 17, 383–388.PubMedGoogle Scholar
  103. Kerr, D.J., Wheldon, T.E., Haydns, S. and Kaye, S.B. (1988). Cytotoxic drug penetration studies in multicellular tumour spheroids. Xenobiotica. 18, 641–648.PubMedGoogle Scholar
  104. Kjoo, S.K., Hurst, T., Webb, M.J., Dickie, G., Kearsley, J., Parsons, P.G. and Mackay, E.V. (1988). Cisplatin chemotherapy of ovarian cancer: is short-term in vitro chemosensitivity predictive of long-term patient survival? Aust. N.Z.J. Obstet. Gynaecol. 28, 313–337.Google Scholar
  105. Khoo, S.K., Hurst, T., Webb, M.J., Dickie, G., Kearsley, J., Parsons, P.G. and Mackay, E.V. (1989). Clinical value of in vitro drug sensitivity testing based on short-term effects on DNA and RNA metabolism in ovarian cancer. J. Surg. Oncol. 41, 201–225.PubMedGoogle Scholar
  106. Knaus, W.A. and Nash, D.B. (1988) Predicting and evaluating patient outcomes. Ann.Intern.Med. 109, 521–522.PubMedGoogle Scholar
  107. Knuchel, R., Hofstadter, F., Jenkins, W.E. and Masters, J.R.W. (1989). Sensitivities of monolayers and spheroids of the human bladder cancer cell line MGH-U1 to the drugs used for intravesical chemotherapy. Cancer Res. 49, 1397–1401.PubMedGoogle Scholar
  108. Kondo, T. (1971). Prediction of response of tumor and host to cancer chemotherapy. Natl. Cancer Inst. Monogr. 34, 251–256.PubMedGoogle Scholar
  109. Kondo, T., Imamura, T. and Ichihashi, H. (1966). In vitro test for sensitivity of tumor to carcinostatic agents. Gann 57, 113–121.PubMedGoogle Scholar
  110. Konen, P.L., Currier, S.J., Rutherford, A.V., Gottesman, M.M., Pastan, I. and Willingham, M.C. (1989). The multidrug transporter: rapid modulation of efflux activity monitored in single cells by the morphologic effects of vinblastine and daunomycin. J Histochem. Cytochem. 37, 1141–1145.PubMedGoogle Scholar
  111. Kornblith, P.L., Smith, B.H. and Leonard, L.A. (1981). Response of cultured human brain tumors to nitrosoureas: correlation with clinical data. Cancer 47, 255–265.PubMedGoogle Scholar
  112. Kraker, A.J. and Moore, C.W. (1988). Accumulation of cis-diamminedichloroplatinum(II) and platinum analogues by platinum-resistant murine leukemia cells in vitro. Cancer Res. 48, 9–13.PubMedGoogle Scholar
  113. Kramer, R.A., Zakher, J. and Kim, G. (1988) Role of the glutathione redox cycle in acquired and de novo multidrug resistance. Science 241, 694–697.PubMedGoogle Scholar
  114. Kurnick, N.B., Coats, H.A. and Dejesus, I. (1983). A new method for in vitro chemosensitivity assay: inhibition of metabolic CO2 production. Biomed. Pharmacol. 37, 351–353.Google Scholar
  115. Leonetti, C., D’Agnano, I., Del Bufalo, D., Carapella, CM. and Zupi, G. (1989) Human glioma lines as experimental model for biological and chemosensitivity studies. J Neurosurg. Sci. 33, 39–42.PubMedGoogle Scholar
  116. Lewis, A.D., Hickson, I.D., Robson, C.N., Harris, A.L., Hayes, J.D., Griffiths, S.A., Manson, M.M., Hall, A.E., Moss, J.E. and Wolf, C.R. (1988) Amplification and increased expression of alpha class glutathione S-transferase-encoding genes associated with resistance to nitrogen mustards. Proc. Natl. Acad. Sci. USA 85, 8511–8515.PubMedGoogle Scholar
  117. Lieber, M.M. and Kovach, J.S. (1982). Soft agar colony formation assay for chemotherapeutic sensitivity of human solid tumors. Mayo Clin.Proc. 57, 527–528.PubMedGoogle Scholar
  118. Lind, S.E. and Singer, D.E. (1986). Diagnosing liver metastases: a Bayesian analysis. J. Clin. Oncol. 4, 379–388.PubMedGoogle Scholar
  119. Link, K.H., Aigner, K.R., Kuehn, W., Schwemmle, K. and Kern, D.H. (1986). Prospective correlative chemosensitivity testing in high-dose intraarterial chemotherapy for liver metastases. Cancer Res. 46, 4837–4840.PubMedGoogle Scholar
  120. Livingston, R.B., Titus, G.A. and Heilbrun, L.K. (1980). In vitro effects on DNA synthesis as a predictor of biologic effect from chemotherapy. Cancer Res. 40, 2209–2212.PubMedGoogle Scholar
  121. Longo, D. (1988). in vitro chemosensitivity testing: still experimental. Clinical Oncology Alert 3(2), 8–8.Google Scholar
  122. Ma, D.D.F., Davey, R.A., Harman, D.H., Isbister, J.P., Scurr, R.D., Mackertich, S.M., Dowden, G. and Bell, D.R. (1987). Detection of a Multidrug Resistant Phenotype in Acute Non-lymphoblastic Leukaemia. Lancet 1, 135–137.PubMedGoogle Scholar
  123. Machin, D. and Campbell, M.J. (1987). Statistical tables for the design of clinical trials. Boston: Blackwell Scientific Publications. pp. 94–168.Google Scholar
  124. Maehara, Y., Miyamoto, K., Anai, H., Kusumoto, H., Fukuchi, K., Masuda, H. and Sugimachi, K. (1987a). [Comparison between the succinate dehydrogenase inhibition test and ATP assay for in vitro chemosensitivity testing]. Gan To.Kagaku.Ryoho. 14, 630–634.PubMedGoogle Scholar
  125. Maehara, Y., Anai, H., Tamada, R. and Sugimachi, K. (1987b). The ATP assay is more sensitive than the succinate dehydrogenase inhibition test for predicting cell viability. Eur. J Cancer. Clin Oncol. 23, 273–326.PubMedGoogle Scholar
  126. Maehara Y. Anai H. Kusumoto H. Kusumoto T. and Sugimachi K. 1988. Colorectal carcima in vitro is more sensitive to 1-hexylcarbamoyl-5-fluorouracil compared with six other antitumor drugs carboquone adriamycin mitomycin c aclacimycin a cisplatin 5-fluorouracil. Dis. Colon. Rectum.; 3162–67 1988Google Scholar
  127. Maehara, Y., Kusumoto, T., Kusumoto, H., Anai, H. and Sugimachi, K. (1989). In vitro sensitivity of various human tumors to 1-beta-d-arabinofuranosylcytosine and N4-behenoy1-1-beta-d-arabinofuranosylcytosine. Chemotherapy. 35, 181–216.PubMedGoogle Scholar
  128. Makuch, R.W. (1982) Interpreting clonogenic assay results. Lancet 2, 438.PubMedGoogle Scholar
  129. Malaise, E.P., Fertil, B., Chavaudra, N. and Guichard, M. (1986). Distribution of radiation sensitivities for human tumor cells of specific histological types: comparison of in vitro to in vivo data. Int J Radiat. Oncol. Biol. Phys. 12, 617–624.PubMedGoogle Scholar
  130. Masuda, H., Ozols, R.F., Lai, G.-M., Fojo, A., Rothenberg, M. and Hamilton, T.C. (1988). Increased DNA repair as a mechanism of acquired resistance to cis-diamminedichloroplatinum(II) in human ovarian cancer cell lines. Cancer Res. 48, 5713–5716.PubMedGoogle Scholar
  131. Mattern, J., Kaufmann, M. and Volm, M. (1983). Short term assay using radioactive nucleic acid precursors. In: Human Tumor Drug Sensitivity Testing in vitro. Eds P.P. Dendy and B.T. Hill. New York: Academic Press. pp. 57–68.Google Scholar
  132. Mattern, J., Wayss, K. and Volm, M. (1986a). [Status of testing cytostatic drugs in the therapy of malignant tumors]. Dtsch.Med Wochenschr. 111, 676–678.PubMedGoogle Scholar
  133. Mattern, J., Wayss, K. and Volm, M. (1986b). Predicting chemosensitivity of tumors. Breast Cancer Res.Treat. 8, 157–159.PubMedGoogle Scholar
  134. Mattern, J., Bak, M., Hahn, E.W. and Volm, M. (1988). Human tumor xenografts as model for drug testing. Cancer Metastasis. Rev. 7, 263–284.PubMedGoogle Scholar
  135. McGrath, T., Marquardt, D. and Center, M.S. (1989). Multiple mechanisms of adriamycin resistance in the human leukemia cell line CCRF-CEM. Biochem. Pharmacol. 38, 497–501.PubMedGoogle Scholar
  136. McGuire, W.L., Kern, D.H., Von Hoff, D.D. and Weisenthal, L.M. (1988). In vitro assays to predict drug sensitivity and drug resistance. Breast Cancer Res. Treat. 12, 7–21.PubMedGoogle Scholar
  137. Merkel, D.E., Fuqua, A.W., Hill, S.M. and McGuire, W.L. (1988). P-glycoprotein gene amplification or overexpression is not detected in clinical breast cancer specimens. In: Prediction of Response to Cancer Chemotherapy. Prog Clin Biol Res V.276. Ed T.C. Hall. New York: Alan R. Liss, Inc. pp. 61–74.Google Scholar
  138. Meyers, M.B., Shen, W.P., Spengler, B.A., Ciccarone, V., O’Brien, J.P., Donner, D.B., Furth, M.E. and Biedler, J.L. (1988). Increased epidermal growth factor receptor in multidrug-resistant human neuroblastoma cells. J. Cell. Biochem. 38, 87–97.PubMedGoogle Scholar
  139. Midander, J. and Revesz, L. (1980). The frequency of micronuclei as a measure of cell survival in irradiated cell populations. Int. J. Radiat. Biol. 38, 237–241.Google Scholar
  140. Mitchell, J.B. (1988). Potential applicability of nonclonogenic measurements to clinical oncology. Radiat. Res. 114, 401–414.PubMedGoogle Scholar
  141. Moscow, J.A., Fairchild, C.R., Madden, M.J., Ransom, D.T., Wieand, H.S., O’Brien, E.E., Poplack, D.G., Cossman, J., Myers, C.E. and Cowan, K.H. (1989). Expression of anionic glutathione-S-transferase and P-glycoprotein genes in human tissues and tumors. Cancer Res. 49, 1422–1428.PubMedGoogle Scholar
  142. Naito, K., Hisazumi, H., Asari, T., Kobashi, K., Amano, T. and Uchibayashi, T. (1986). [An in vitro chemosensitivity study using human tumor clonogenic assay in urologic malignancies]. Hinyokika.Kiyo. 32, 1959–1966.PubMedGoogle Scholar
  143. Nakamura, H., Ishiguro, K. and Mori, T. (1988) Different immune functions of peripheral blood, regional lymph node, and tumor infiltrating lymphocytes in lung cancer patients. Cancer 62, 2489–2497.PubMedGoogle Scholar
  144. Nakanishi, Y., Mulshine, J.L., Kasprzyk, P.G., Natale, R.B., Maneckjee, R., Avis, I., Treston, A.M., Gazdar, A.F., Minna, J.D. and Cuttitta, F. (1988). Insulin-like growth factor-I can mediate autocrine proliferation of human small cell lung cancer cell lines in vitro. J. Clin. Invest. 82, 354–359.PubMedGoogle Scholar
  145. Nakashima, T., Uemura, T., Maehara, Y. and Sugimachi, K. (1989). Succinate dehydrogenase inhibition test for evaluating head and neck tumors. Oncology. 46, 162–218.PubMedGoogle Scholar
  146. Nishiyama, M., Takagami, S., Kirihara, Y., Saeki, T., Niimi, K., Nosoh, Y., Hirabayashi, N., Niimoto, M. and Hattori, T. (1988). The indications of chemosensitivity tests against various anticancer agents. Jpn. J. Surg. 18, 647–652.PubMedGoogle Scholar
  147. Opdenakker, G., Cabeza-Arvelaiz, Y. and Van Damme, J. (1989). Interaction of interferon with other cytokines. Experientia 45, 513–520.PubMedGoogle Scholar
  148. Pagé M., Bejaoui, N., Cinq-Mars, B. and Lemieux, P. (1988). Optimization of the tetrazolium-based colorimetric assay for the measurement of cell number and cytotoxicity. Int. J. Immunopharmacol. 10, 785–793.PubMedGoogle Scholar
  149. Paull, K.O., Shoemaker, R.H., Hodes, L., Monks, A., Scudiero, D.A., Rubinstein, L., Plowman, J., Boyd, M.R. (1989). Display and analysis of differential activity of drugs against human tumor cell lines: development of mean graph and compare algorithm. J. Natl. Cancer Inst. 81, 1088–1092.PubMedGoogle Scholar
  150. Patterson, J.E., Colodny, S.M. and Zervos, M.J. (1988). Serious infection due to ß-lactamase-producing Streptococcus faecalis with high-level resistance to gentamicin. J. Infect. Dis. 158, 1144–1145.PubMedGoogle Scholar
  151. Peehl, D.M. and Stanbridge, E.J. (1981). Anchorage-independent growth of normal human fibroblasts. Proc. Natl. Acad. Sci. USA 18, 3053–3057.Google Scholar
  152. Peters, L.J., Hopwood, L.E., Withers, H.R. et al. (1984). Predictive assays of tumor radiocurability. Cancer Treat Symp 1, 67–74.Google Scholar
  153. Peters, L.J., Brock, W.A., Chapman, J.D. and Wilson, G. (1988). Predictive assays of tumor radiocurability. Am. J. Clin. Oncol. 11, 275–287.PubMedGoogle Scholar
  154. Philbrick, J.T., Horwitz, R.I. and Feinstein, A.R. (1980). Methodologic problems of exercise testing for coronary artery disease: groups, analysis, and bias. Am. J. Cardiol. 46, 807–812.PubMedGoogle Scholar
  155. Pieters, R., Huismans, D.R., Leyva, A. and Veerman, A.J.P. (1988). Adaptation of the rapid automated tetrazolium dye based (MTT) assay for chemosensitivity testing in childhood leukemia. Cancer Lett. 41, 323–332.PubMedGoogle Scholar
  156. Pieters, R., Huismans, D.R., Leyva, A. and Veerman, A.J.P. (1989). Comparison of the rapid automated MTT-assay with a dye exclusion assay for chemosensitivity testing in childhood leukaemia. Br. J. Cancer 59, 217–220.PubMedGoogle Scholar
  157. Pinelli, A., Trivulzio, S., Von Hoff, D.D. and Warfel, L. (1987). Comparison of two methods to evaluate drug-cytotoxicity on tumor cell lines cultured in vitro. Pharmacol. Res. Commun. 19, 913–923.PubMedGoogle Scholar
  158. Politi, P.M. and Sinha, B.K. (1989). Role of differential drug uptake, efflux, and binding of etoposide in sensitive and resistant human tumor cell lines: implications for the mechanisms of drug resistance. Mol. Pharmacol. 35, 271–278.PubMedGoogle Scholar
  159. Potmesil, M., Hsiang, Y.H., Liu, L.F., Bank, B., Grossberg, H., Kirschenbaum, S., Forlenzar, T.J., Penziner, A., Kanganis, D., Knowles, D. et al. (1988). Resistance of human leukemic and normal lymphocytes to drug-induced DNA cleavage and low levels of DNA topoisomerase II. Cancer Res. 48, 3537–3543.PubMedGoogle Scholar
  160. Puck, T.T. and Marcus, P.I. (1956). Action of x-rays on mammalian cells. J. Exp. Med. 103, 653–666.PubMedGoogle Scholar
  161. Rapp, E., Pater, J.L., Willan, A., Cormier, Y., Murray, N., Evans, W.K., Hodson, D.I., Clark, D.A., Feld, R., Arnold, A.M., Ayoub, J.I., Wilson, K.S., Latreille, J., Wierzbicki, R.F. and Hill, D.P. (1988). Chemotherapy can prolong survival in patients with advanced non-small-cell lung cancer — report of a Canadian multicenter randomized trial. J. Clin. Oncol. 6, 633–641.PubMedGoogle Scholar
  162. Raza, A., Gezer, S., Anderson, J., Browman, G., Goldberg, J., Gottlieb, A., Grunwald, H., Larson, R., Miller, K., Vogler, R. et al. (1989). Recognition of a subgroup of patients with acute myeloid leukemia who will not respond to therapy with high dose cytosine arabinoside using bromodeoxyuridine and tritiated ARAC in vitro (Meeting Abstract). Proc. Annu. Meet. Am. Soc. Clin. Oncol. 8, A778.Google Scholar
  163. Redwood, D.R., Borer, J.S. and Epstein, S.E. (1976). Wither the ST segment during exercize?. Circulation 54, 703–706.PubMedGoogle Scholar
  164. Roper, P.R. and Drewinko, B. (1976). Comparison of In vitro methods to determine drug-induced cell lethality. Cancer Res. 36, 2182–2188.PubMedGoogle Scholar
  165. Rosenblum, M.L., Gerosa, M.A., Wilson, C.B., Barger, G.R., Pertuiset, B.F., De Tribolet, N. and Dougherty, D.V. (1983). Stem cell studies of human malignant brain tumors. Part 1: Development of the stem cell assay and its potential. J Neurosurg. 58, 170–176.PubMedGoogle Scholar
  166. Rotman, B., Teplitz, C., Dickinson, K. and Cozzolino, J.P. (1988) Individual human tumors in short-term micro-organ cultures: Chemosensitivity testing by fluorescent cytoprinting. In vitro Cell. Dev. Biol. 24, 1137–1138.PubMedGoogle Scholar
  167. Rotman, B. (1989). Fluorescent cytoprinting: a simple nondestructive process for assessing chemosensitivity in micro-organ cultures (MEETING ABSTRACT). Proc. Am. Assoc. Cancer Res. 30, 654–665.Google Scholar
  168. Rozenczweig, M. and Staquet, M. (1984). Predictive tests for the response to cancer chemotherapy: limitations related to the prediction of rare events. Cancer Treat. Rep. 68, 611–613.Google Scholar
  169. Ruckdeschel, J.C., Finkelstein, D.M., Ettinger, D.S., Creech, R.H., Mason, B.A., Joss, R.A. and Vogel, S. (1986). A randomized trial of the four most active regimens for metastatic non-small cell lung cancer. J. Clin. Oncol. 4,14–22PubMedGoogle Scholar
  170. Ruckdeschel, J.C., Carney, D.N., Oie, H.K., Russell, E.K. and Gazdar, A.F. (1987) In vitro chemosensitivity of human lung cancer cell lines. Cancer Treat.Rep. 71, 697–704.PubMedGoogle Scholar
  171. Saccardi R. Bernabei P.A. Bezzini R. Agosti F.C. Leoni F. and Rossi Ferrini P. 1988. In vitro short-term sensitivity test for the prediction of response to chemotherapy in acute n-lymphocytic leukemia. Chemioterapia 7 173–178Google Scholar
  172. Saeki, T., Jinushi, K., Kim, R., Kirihara, Y., Takagami, S., Nishiyama, M., Saeki, K., Niimoto, M. and Hattori, T. (1989) [Comparison of succinic dehydrogenase inhibition test with adenosine triphosphate inhibition assay for human solid tumors as in vitro chemosensitivity tests]. Gan To. Kagaku. Ryoho. 16, 2025–2030.PubMedGoogle Scholar
  173. Salmon, S.E. (1987). Improved methodology for chemosensitivity testing? [editorial]. J. Clin. Oncol. 5, 1861–1863.PubMedGoogle Scholar
  174. Salmon, S.E., Hamburger, A.W., Soehnlen, B., Durie, B.G.M., Alberts, D.S. and Moon, T.E. (1978). Quantitation of differential sensitivity of human tumor stem cells to anticancer drugs. N. Engl. J. Med. 298, 1321–1325.PubMedGoogle Scholar
  175. Salmon, S.E., Grogan, T.M., Miller, T., Scheper, R. and Dalton, W.S. (1989). Prediction of doxorubicin resistance in vitro in myeloma, lymphoma, and breast cancer by P-glycoprotein staining. J Natl. Cancer Inst. 81, 696–701.PubMedGoogle Scholar
  176. Salmon, S.E. (1990) Chemosensitivity testing: another chapter. J. Natl. Cancer Inst. 82, 82–83.PubMedGoogle Scholar
  177. Sanders, W.E. Jr. and Sanders, C.C. (1982) Do in vitro antimicrobial susceptibility tests accurately predict therapeutic responsiveness in infected patients?. In: Significance of medical microbiology in the care of patients. Ed Victor Lorian. Baltimore: Williams and Wilkins. pp. 325–340.Google Scholar
  178. Santini, V., Bernabei, P.A., Silvestro, L., Dal Pozzo, O., Bezzini, R., Viano, I., Gattei, V., Saccardi, R. and Ferrini, P.R. (1989). In vitro chemosensitivity testing of leukemic cells: prediction of response to chemotherapy in patients with acute non-lymphocytic leukemia. Hematol. Oncol. 7, 287–293.PubMedGoogle Scholar
  179. Sargent, J.M. and Taylor, C.G. (1989). Appraisal of the MTT assay as a rapid test of chemosensitivity in acute myeloid leukaemia. Br. J. Cancer 60, 206–210.PubMedGoogle Scholar
  180. Scheithauer, W., Temsch, E.M., Petzl, D.H. and Jakesz, R. (1989). Application of a new radiometric system for identification of potentially useful drug combinations for treatment of human gastrointestinal adenocarcinoma. Oncology. 46, 143–193.PubMedGoogle Scholar
  181. Schulz, T.F., Vogetseder, W., Mitterer, M., Neumayer, H.P., Myones, B.L., Stauder, R., Greil. R., Böck, G., Feichtinger, H., Huber, H. and Dierich, M.P. (1988). Importance of an 85 kDa membrane glycoprotein for a variety of cell-cell interactions. Mol. Immunol. 25, 1053–1061.PubMedGoogle Scholar
  182. Scudiero, D.A., Shoemaker, R.H., Paull, K.D., Monks, A., Tierney, S., Nofziger, T.H., Currens, M.J., Seniff, D. and Boyd, M.R. (1988). Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 48, 4827–4833.PubMedGoogle Scholar
  183. Sekiya, S., Oosaki, T., Andoh, S., Suzuki, N., Akaboshi, M. and Takamizawa, H. (1989). Mechanisms of resistance to Cis-diamminedichloroplatinum (II) in a rat ovarian carcinoma cell line. Eur. J. Cancer Clin.Oncol. 25, 429–437.PubMedGoogle Scholar
  184. Selby, P., Buick, R.N. and Tannock, I. (1983). A critical appraisal of the ‘human tumor stem cell assay’. New. Engl. J. Med. 308, 129–134.PubMedGoogle Scholar
  185. Shimoyama, Y., Kubota, T., Watanabe, M., Ishibiki, K. and Abe, O. (1989). Predictability of in vivo chemosensitivity by in vitro MTT assay with reference to the clonogenic assay. J. Surg. Oncol. 41, 12–18.PubMedGoogle Scholar
  186. Shoemaker, R.H., Wolpert-Defilippes, M.K., Kern, D.H., Lieber, M.M., Makuch, R.W., Melnick, N.R., Miller, W.T., Salmon, S.E., Simon, R.M., Venditti, J.M. et al. (1985). Application of a human tumor colony-forming assay to new drug screening. Cancer Res. 45, 2145–2153.PubMedGoogle Scholar
  187. Shoemaker, R.H., Monks, A., Alley, M.C., Scudiero, D.A., Fine, D.L., McLemore, T.L., Abbott, B.J., Paull, K.D., Mayo, J.G. and Boyd, M.R. (1988). Development of human tumor cell line panels for use in disease-oriented drug screening. Prog. Clin. Biol. Res. 276, 265–286.PubMedGoogle Scholar
  188. Silvestrini, R., Sanfilippo, O., Daidone, M.G. and Zaffaroni, N. (1988). Inhibition of DNA synthesis in selection of anticancer therapy. Prog. Clin. Biol. Res. 276, 93–103.PubMedGoogle Scholar
  189. Singh, S.V., Haque, A.K., Ahmad, H., Medh, R.D. and Awasthi, Y.C. (1988). Glutathione S-transferase isoenzymes in human lung tumors. Carcinogenesis 9, 1681–1685.PubMedGoogle Scholar
  190. Sinha, B.K., Mimnaugh, E.G., Rajagopalan, S. and Myers, C.E. (1989). Adriamycin activation and oxygen free radical formation in human breast tumor cells: Protective role of glutathione peroxidase in adriamycin resistance. Cancer Res. 49, 3844–3848.PubMedGoogle Scholar
  191. Skipper, H.E. and Schabel, F.M. Jr. (1984). Tumor stem cell heterogeneity: implications with respect to classification of cancers by chemotherapeutic effect. Cancer Treat. Rep. 68, 43–61.PubMedGoogle Scholar
  192. Slamon, D.J. and Clark, G.M. (1988). Amplification of c-erbB-2 and aggressive human breast tumors. Science 240, 1795–1798.PubMedGoogle Scholar
  193. Smith, H.S., Lippman, M.E., Hiller, A.J., Stampfer, M.R. and Hackett, A.J. (1985). Response to doxorubicin of cultured normal and cancerous human mammary epithelial cells. J. Natl. Cancer Inst. 74, 341–347.PubMedGoogle Scholar
  194. Smith, H.S., Zoli, W., Volpi, A., Amadori, D., Hiller, A., Lippman, M., Swain, S. and Hackett, A.J. (1988). Predictive value of an in vitro assay of chemotherapeutic drug sensitivity for breast cancer (MEETING ABSTRACT). Proc AACR 29, 1945.Google Scholar
  195. Smith H.S. Zoli W. pi A. Hiller A. Lippman M.E. Swain S. Mayall B. Dollbaum C. Hackett A.J. and Amadori D. 1990. Preliminary correlations of clinical outcome with in vitro chemosensitivity of second passage human breast cancer cells. Cancer Res. 502943–2957Google Scholar
  196. Sondak, V.K., Bertelsen, C.A., Tanigawa, N., Hildebrand-Zanki, S.U., Morton, D.L., Korn, E.L. and Kern, D.H. (1984). Clinical correlations with chemosensitivities measured in a rapid thymidine incorporation assay. Cancer Res. 44, 1725–1728.PubMedGoogle Scholar
  197. Sondak, V.K., Bertelsen, C.A., Kern, D.H. and Morton, D.L. (1985). Evolution and clinical application of a rapid chemosensitivity assay. Cancer 55, 1367–1371.PubMedGoogle Scholar
  198. Spiridonidis, C.A., Chatterjee, S., Petzold, S.J. and Berger, N.A. (1989). Topoisomerase II-dependent and-independent mechanisms of etoposide resistance in Chinese hamster cell lines. Cancer Res. 49, 644–650.PubMedGoogle Scholar
  199. Steel, G.G and Adams, K. (1975). Stem-cell survival and tumor control in the Lewis lung carcinoma. Cancer Res. 35, 1530–1535PubMedGoogle Scholar
  200. Steel, G.G. (1977a). Cell population kinetics of human tumours. In: Growth Kinetics of Tumours. Ed G.G. Steel. Oxford: Clarendon Press. pp. 185–216.Google Scholar
  201. Steel, G.G. (1977b). Growth and survival of tumour stem cells. In: Growth Kinetics of Tumours. Ed G.G. Steel. Oxford: Clarendon Press. pp. 217–267.Google Scholar
  202. Suto, A., Kubota, T., Shimoyama, Y., Ishibiki, K. and Abe, O. (1989). MTT Assay with Reference to the Clinical Effect of Chemotherapy. J. Surg. Oncol. 42, 28–32.PubMedGoogle Scholar
  203. Taetle, R. and Koziol, J.A. (1985). In vitro drug testing using hemopoietic cells: goals and limitations. CRC. Crit. Rev. Oncol. Hematol. 4, 169–201 1985.Google Scholar
  204. Takagi, S., Chen, K., Schwarz, R., Iwatsuki, S., Herberman, R.B. and Whiteside, T.L. (1989). Functional and phenotypic analysis of tumor-infiltrating lymphocytes isolated from human primary and metastatic liver tumors and cultured in recombinant interleukin-2. Cancer 63, 102–111.PubMedGoogle Scholar
  205. Tanigawa, N., Shimomatsuya, T., Takahashi, K., Inoue, H., Morimoto, H., Masuda, Y., Muraoka, R., Saitoh, H. and Tanaka, T. (1989). [An in vitro drug screening assay, scintillation assay, and its clinical application]. Gan To. Kagaku. Ryoho. 16, 1880–1887.PubMedGoogle Scholar
  206. Teicher, B.A., Herman, T.S., Holden, S.A., Wang, Y.Y., Pfeffer, M.R., Crawford, J.W. and Frei, E. (1990). Tumor resistance to alkylating agents conferred by mechanisms operative only in vivo. Science 247, 1457–1461.PubMedGoogle Scholar
  207. Thompson, L.H. and Suit, H.D. (1969). Proliferation kinetics of x-irradiated mouse L-cells studied with time lapse photography. Int. J. Radiat. Biol. Med. 15, 347–362.Google Scholar
  208. Tidefelt, U., Sundman-Engberg, B. and Paul, C. (1989). In vitro drug testing in patients with acute leukemia with incubations mimicking in vivo intracellular drug concentrations. Eur. J. Haematol. 43, 374–384.PubMedGoogle Scholar
  209. Tofilon, P.J., Vines, C.M., Meyn, R.E., Wike, J. and Brock, W.A. (1989). Heterogeneity in radiation sensitivity within human primary tumour cell cultures as detected by the SCE assay. Br. J. Cancer 59, 54–60.PubMedGoogle Scholar
  210. Trott, K.R. (1983). In vivo measurements on the tumour predicting response. In: Cancer Treatment Endpoint Evaluation. Ed B.A. Stoll. New York: John Wiley and Sons Ltd. pp. 303–319.Google Scholar
  211. Tucker, S.L. and Thames, H.D. Jr. (1989). The effect of patient-to-patient variability on the accuracy of predictive assays of tumor response to radiotherapy: a theoretical evaluation. Int J Radiat. Oncol. Biol. Phys. 17, 145–157.PubMedGoogle Scholar
  212. Twentyman, P.R., Fox, N.E. and Rees, J.K.H. (1989). Chemosensitivity testing of fresh leukaemia cells using the MTT colorimetric assay. Br. J. Haematol. 71, 19–24.PubMedGoogle Scholar
  213. Uchibayashi, T., Hisazumi, H., Egawa, M., Asari, T., Kobashi, K., Amano, T., Naito, K., Sasaki, T., Tanaka, M. and Endo, Y. (1988). [Chemosensitivity studies of urological malignancies]. Hinyokika. Kiyo. 34, 187–188.Google Scholar
  214. Umbach, G.E., Spitzer, G., Hug, V. and Atkinson, E.N. (1983). Human tumor stem-cell assay (letter). New. Engl. J. Med. 308, 1479.Google Scholar
  215. Unsigned editorial (1987). DeVita dissatisfied with cooperative groups on accrual; NCAB to hear Wittes’ plan in Feb. In: The Cancer Letter. Ed J.D. Boyd. Reston, VA: pp. 1–3.Google Scholar
  216. Veerman, A.J.P. and Peters, R. (1990) Drug sensitivity assays in leukemia and lymphoma. Br. J. Haematol. 74, 381–384PubMedGoogle Scholar
  217. Vescio, R.A., Redfern, C.H., Nelson, T.J., Ugoretz, S., Stern, P.H. and Hoffman, R.M. (1987). In vivo-like drug responses of human tumors growing in three-dimensional gel-supported primary culture. Proc. Natl Acad. Sci. U.S.A. 84, 5029–5033.PubMedGoogle Scholar
  218. Volm, M., Kaufmann, M., Hinderer, H. and Goerttler, K. (1970). Schnellmethode zur sensibilitatstestung maligner tumoren gegenuber zytostatika. Klin. Wochenschr. 48, 137–144.Google Scholar
  219. Volm, M., Drings, P., Hahn, E.W. and Mattern, J. (1988). Prediction of the clinical chemotherapeutic response of stage III lung adenocarcinoma patients by an in vitro short term test. Br. J Cancer. 57, 198–200.PubMedGoogle Scholar
  220. Volm, M., Efferth, T., Bak, M., Ho, A.D. and Mattern, J. (1989). Detection of the multidrug resistant phenotype in human tumours by monoclonal antibodies and the streptavidin-biotinylated phycoerythrin complex method. Eur. J Cancer. Clin. Oncol. 25, 743–749.PubMedGoogle Scholar
  221. Von Hoff, D.D. (1983). ‘Send this patient’s tumor for culture and sensitivity’. N. Engl. J. Med. 308, 154–155.Google Scholar
  222. Von Hoff, D.D. (1987). in vitro predictive testing: the sulfonamide era. Int J Cell. Cloning. 5, 179–190.Google Scholar
  223. Von Hoff, D.D. (1988). Human tumor stem cell assays. In: Current Therapy in Hematology-Oncology — 3. Eds M.C. Brain and P.P. Carbone. Toronto: B.C. Decker. pp. 365–367.Google Scholar
  224. Von Hoff, D.D. (1989). Human tumor cloning assays: applications in clinical oncology and new antineoplastic drug development. Cancer Met. Rev. 7, 357–371.Google Scholar
  225. Von Hoff, D.D. (1990). He’s not going to talk about In vitro predictive assays again, is he?. J. Natl. Cancer Inst. 82, 96–101.Google Scholar
  226. Von Hoff, D.D. and Weisenthal, L. (1980). In vitro methods to predict for patient response to chemotherapy. Adv. Pharmacol. Chemother. 17, 133–156.Google Scholar
  227. Von Hoff, D.D., Clark, G.M., Stogdill, B.J., Sarosdy, M.F., O’Brien, M.T., Casper, J.T., Mattox, D.E., Page, C.P., Cruz, A.B. and Sandbach, J.F. (1983). Prospective clinical trial of a human tumor cloning system. Cancer Res. 43, 1926–1931.Google Scholar
  228. Von Hoff, D.D., Forseth, B.J., Turner, J.N., Clark, G.M. and Warfel, L.E. (1986). Selection of chemotherapy for patient treatment utilizing a radiometric versus a cloning system. Int J Cell. Cloning. 4, 16–26.Google Scholar
  229. Von Hoff, D.D., Sandbach, J.F., Clark, G.M., Turner, J.N., Forseth, B.F., Piccart, M.J., et al. (1990) Selection of cancer chemotherapy for a patient by an in vitro assay versus a clinician. J. Natl. Cancer Inst. 82, 110–116.Google Scholar
  230. Watts, M.E., Roberts, I.J. and Woodcock, M. (1989). A comparison of colorimetric and clonogenic assays for hypoxic-specific toxins with hamster and human cells. Int J Radiat. Oncol. Biol. Phys. 16, 939–942.PubMedGoogle Scholar
  231. Weichselbaum, R.R., Epstein, J., Little, J.B. and Kornblith, P. (1976). Inherent cellular radiosensitivity of human tumors of varying clinical radiocurability. Am. J. Roentgenol. 127, 1027–1032.Google Scholar
  232. Weichselbaum, R.R., Dahlberg, W., Little, J.B. et al. (1984) Cellular x-ray repair parameters of early passage squamous cell carcinoma lines derived from patients with known responses to radiotherapy. Br. J. Cancer 49, 595–601.PubMedGoogle Scholar
  233. Weisenthal, L.M. (1981). In vitro assays in preclinical antineoplastic drug screening. Semin. Oncol. 8, 362–376.PubMedGoogle Scholar
  234. Weisenthal, L.M. (1986a). Treatment of multiple myeloma directed by in vitro chemosensitivity testing (Veterans Administration Cooperative Studies Program-280). (UnPub)Google Scholar
  235. Weisenthal, L.M. (1987b). Clones, dyes, nuclides, mouse kidneys, and.. virions: a new-clonogenic assay for tumor chemosensitivity. Eur. J. Cancer Clin. Oncol. 23, 9–12.PubMedGoogle Scholar
  236. Weisenthal, L.M. (1987c). Phase II trial of high-dose cisplatin chemotherapy of non-small cell lung cancer with chemosensitivity assay correlation, followed by assay-directed monochemotherapy (Eastern Cooperative Oncology Group P-B585). (UnPubGoogle Scholar
  237. Weisenthal, L.M. and Lippman, M.E. (1985). Clonogenic and nonclonogenic in vitro chemosensitivity assays. Cancer Treat. Rep. 69, 615–632.PubMedGoogle Scholar
  238. Weisenthal, L.M., Marsden, J.A., Dill, P.L. and Macaluso, C.K. (1983a). A novel dye exclusion method for testing in vitro chemosensitivity of human tumors. Cancer Res. 43, 749–757.PubMedGoogle Scholar
  239. Weisenthal, L.M., Dill, P.L., Kurnick, N.B. and Lippman, M.E. (1983b). Comparison of dye exclusion assays with a clonogenic assay in the determination of drug-induced cytotoxicity. Cancer Res. 43, 258–264.PubMedGoogle Scholar
  240. Weisenthal, L.M., Lalude, A.O. and Miller, J.B. (1983c). In vitro chemosensitivity of human bladder cancer. Cancer 51, 1490–1496.PubMedGoogle Scholar
  241. Weisenthal, L.M., Shoemaker, R.H., Marsden, J.A., Dill, P.L., Baker, J.A. and Moran, E.M. (1984). In vitro chemosensitivity assay based on the concept of total tumor cell kill. Recent Results. Cancer Res. 94, 161–173.Google Scholar
  242. Weisenthal, L.M., Dill, P.L., Finkelstein, J.Z., Duarte, T.E., Baker, J.A. and Moran, E.M. (1986). Laboratory detection of primary and acquired drug resistance in human lymphatic neoplasms. Cancer Treat. Rep. 70, 1283–1295.PubMedGoogle Scholar
  243. Weisenthal, L.M., Su, Y.Z., Duarte, T.E., Dill, P.L. and Nagourney, R.A. (1987). Perturbation of in vitro drug resistance in human lymphatic neoplasms by combinations of putative inhibitors of protein kinase C. Cancer Treat. Rep. 71, 1239–1243.PubMedGoogle Scholar
  244. Weisenthal, L.M., Su, Y.Z., Duarte, T.E. and Nagourney, R.A. (1988). Non-clonogenic, in vitro assays for predicting sensitivity to cancer chemotherapy. Prog. Clin. Biol. Res. 276, 75–92.PubMedGoogle Scholar
  245. Weisenthal, L.M., Dill, P.L. and Swingle, K.F. (1989). Clinical radiation sensitivity profiles of human neoplasms are reproduced by a short-term in vitro (DiSC) assay measuring cytotoxicity in the total (largely nondividing) tumor cell population following ultra-high dose, single-fraction radiation (MEETING ABSTRACT). Proc. Am. Assoc. Cancer Res. 30, A401.Google Scholar
  246. Weisenthal L.M. Nagourney R.A. Kern D.H. Boullier B. Bosanquet A.G. Dill P.L. Messenger J.C. and Moran E.M. 1990. Approach to the clinical circumvention of drug resistance utilizing a n-clogenic in vitro assay measuring the effects of drugs radiation and interleukin-II on largely n-dividing cells. Adv. Clin. Oncol. 191–111Google Scholar
  247. Wells, J., Berry, RJ. and Laing, A.H. (1976). X-ray survival curves of freshly explanted human tumour cells from a variety of organs. In: Human Tumours in Short Term Culture. Ed P.P. Dendy. London: Academic Press. pp. 185–187.Google Scholar
  248. West, C.M. and Sutherland, R.M. (1986). A radiobiological comparison of human tumor soft-agar clonogenic assays. Int. J. Cancer 37, 897–903.PubMedGoogle Scholar
  249. Wilcox, W.S., Griswold, D.P., Laster, W.R., Schabel, F.M. and Skipper, H.E. (1965). Experimental evaluation of potential anticancer agents. XVII. Kinetics of growth and regression after treatment of certain solid tumors. Cancer Chemother. Rep. 47, 27–39.PubMedGoogle Scholar
  250. Wittliff, J.L., Day, T.G. Jr., Dean, W.L. and Allegra, J.C. (1988). Identification of endocrine responsive breast and endometrial carcinoma using steroid hormone receptors. In: Ed T.C. Hall. New York: Alan R. Liss, Inc. pp. 11–41.Google Scholar
  251. Wolberg, W.H. and Brown, R.R. (1962). Autoradiographic studies of in vitro incorporation of uridine and thymidine by human tumor tissue. Cancer Res. 22, 1113–1121.PubMedGoogle Scholar
  252. Wolberg, W.H. (1967). Determinants of human tumor sensitivity to fluorinated pyrimidine chemotherapy. Ann. Surg. 166, 609–623.PubMedGoogle Scholar
  253. Wright, J.C., Cobb, J.P., Gunport, S.L. et al. (1962). Further investigation of the relation between the clinical and tissue culture response to chemotherapeutic agents on human cancer. Cancer 15, 284–293.PubMedGoogle Scholar
  254. Yoshimoto, K., Iwahana, H., Yokogoshi, Y., Saito, S., Shiraishi, M., Sekiya, T., Gottesman, M.M. and Pastan, I. (1988). A polymorphic HindIII site within the human multidrug resistance gene 1 (MDR1). Nucleic Acids Res. 16, 11850.PubMedGoogle Scholar
  255. Zaffaroni, N., Silvestrini, R., Grignolio, E., Villa, R. and Demarco, C. (1988). Comparison of an antimetabolic assay and an antiproliferative assay, both using 3H-thymidine incorporation, to test drug sensitivity of human tumors. Int J Cell. Cloning. 6, 392–403.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • Larry M. Weisenthal

There are no affiliations available

Personalised recommendations