Skip to main content

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 41))

  • 353 Accesses

Abstract

In this chapter we begin a study of Dirac’s equation for a single particle in the presence of other particles and fields. This study actually commenced with the derivation of the bound-state energy levels in a fixed Coulomb field, although it was noted that the picture was not yet complete. For example, there are relativistic corrections to the hyperfine structure which can be obtained by accounting for nuclear mass, spin, and magnetic moment. Indeed, it is usually the finite size of the nucleus which is invoked to resolve the large-Z difficulties. Similarly, relativistic corrections to magnetic-field splitting arise in the form of the anomalous Zeeman effect. Many of these correction terms are readily evaluated by straightforward perturbation theory (e.g., Rose, 1961; Berestetskii, et al, 1971), and others will be developed more rigorously in Chapter 8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almeida, C.A.: 1985, ‘Influence of the Anomalous Magnetic Dipole Moment of the Electron in Atoms of High Atomic Number’, M.S. thesis, Universidade Federal do Ceará, Brasil (unpublished).

    Google Scholar 

  • Bagrov, V.G., D.M. Gitman, V.N. Zadorozhnyi, P.M. Lavrov, and V.N. Shapovalov: 1980, ‘New Exact Solutions to the Dirac Equation’, Sov. Phys. J. 23, 276.

    Article  Google Scholar 

  • Bargmann, V., L. Michel, and V.L. Telegdi: 1959, ‘Precession of the Polarization of Particles Moving in a Homogeneous Electromagnetic Field’, Phys. Rev. Lett. 2, 435.

    Article  ADS  Google Scholar 

  • Barut, A.O.: 1980, ‘Magnetic Resonances Between Massive and Massless Spin- (Math) Particles with Magnetic Moments’, J. Math. Phys. 21, 568.

    Article  MathSciNet  ADS  Google Scholar 

  • Barut, A.O., and A.J. Bracken: 1982, ‘Exact Solutions of the Heisenberg Equations and Zitterbewegung of the Electron in a Constant Uniform Magnetic Field’, Aust. J. Phys. 35, 353.

    ADS  Google Scholar 

  • Barut, A.O., and I.H. Duru: 1987, ‘Exact Solutions of the Dirac Equation in Spatially Flat Robertson-Walker Space-Times’, Phys. Rev. D 36, 3705.

    Article  MathSciNet  ADS  Google Scholar 

  • Barut, A.O., and J. Kraus: 1976, ‘Solution of the Dirac Equation with Coulomb and Magnetic Moment Interactions’, J. Math. Phys. 17, 506.

    Article  MathSciNet  ADS  Google Scholar 

  • Barut, A.O., and S. Malin: 1968, ‘Position Operators and Localizabilty of Quantum Systems Described by Finite- and Infinite-Dimensional Wave Equations’, Rev. Mod. Phys. 40, 632.

    Article  ADS  MATH  Google Scholar 

  • Barut, A.O., and B. Xu: 1981, ‘Conformal Covariance and the Probability Interpretation of Wave Equations’, Phys. Lett. 82A, 218.

    MathSciNet  ADS  Google Scholar 

  • Barut, A.O., M. Berrondo, and G. Garcia-Calderón: 1980, ‘Narrow Resonances as an Eigenvalue Problem and Applications to High Energy Magnetic Resonances: An Exactly Soluble Model’, J. Math. Phys. 21, 1851.

    Article  MathSciNet  ADS  Google Scholar 

  • Berestetskii, V.B., E.M. Lifshitz, and L.P. Pitaevskii: 1971, Relativistic Quantum Theory, Part 1, Pergamon Press, Oxford.

    Google Scholar 

  • Biedenharn, L.C., and N.V.V.J. Swamy: 1964, ‘Remarks on the Relativistic Kepler Problem. II.Approximate Dirac-Coulomb Hamiltonian Possessing Two Vector Invariants’, Phys. Rev 133, B1353.

    Article  MathSciNet  ADS  Google Scholar 

  • Brill, D.R., and J.A. Wheeler: 1957, ‘Interaction of Neutrinos and Gravitational Fields’, Rev. Mod. Phys. 29, 465.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Canuto, V., and C. Chiuderi: 1969, ‘Solution of the Dirac Equation in Orthogonal Electric and Magnetic Fields’, Lett. Nuovo Cimento 2, 223.

    Article  ADS  Google Scholar 

  • Cook, A.H.: 1982, ‘On Separable Solutions of Dirac’s Equation for the Electron’, Proc. Roy. Soc. (London) 383A, 247.

    ADS  Google Scholar 

  • Dosch, H.G., J.H.D. Jensen, and V.F. Müller: 1971, ‘Einige Bemerkungen zum Klein’schen Paradoxon’, Phys. Norv 5, 151.

    Google Scholar 

  • Eckhart, C.: 1930, ‘The Penetration of a Potential Barrier by Electrons’, Phys. Rev. 35, 1303.

    Article  ADS  Google Scholar 

  • Fishbane, P.M., S.G. Gasiorowicz, D.C. Johannsen, and P. Kuas: 1983, ‘Vector and Scalar Confining Potentials and the Klein Paradox’, Phys. Rev. D 27, 2433.

    Article  ADS  Google Scholar 

  • Gamow, G.: 1928, ‘Zur Quantentheorie des Atomkernes’, Z. Phys. 51, 204.

    Article  ADS  MATH  Google Scholar 

  • Gel’fand, I.M., and A.M. Iaglom: 1948a, ‘Obshchie reliativistski invariantnye uravnenia i beskonechnomernye predstavleniia grupy Lorenca’, Zh. Eksp. Teor. Fiz. 18, 703.

    Google Scholar 

  • Gel’fand, I.M., and A.M. Iaglom: 1948b, ‘Teorema Pauli dlia obshchikh reliativistski invariantnykh uravnenii’, Zh. Eksp. Teor. Fiz. 18, 1096.

    Google Scholar 

  • Gel’fand, I.M., and A.M. Iaglom: 1948c, ‘Zariadnaia sobriazhennost’ dlia obshchikh reliativistski invariantnykh uravnenii’, Zh. Eksp. Teor. Fiz. 18, 1105.

    Google Scholar 

  • Glassr, M.L., and N. Shawagfeh: 1984, ‘Dirac Equation for a Linear Potential’, J. Math. Phys. 25, 2533.

    Article  MathSciNet  ADS  Google Scholar 

  • Goldman, T., and W.Tsai: 1971, ‘Motion of Charged Particles in a Homogeneous Magnetic Field. II’, Phys. Rev. D 4, 3648.

    Article  ADS  Google Scholar 

  • Huff, I.D.: 1931, ‘The Motion of a Dirac Electron in a Magnetic Field’, Phys. Rev. 38, 501.

    Article  ADS  Google Scholar 

  • Itzykson, C., and J.-B. Zuber: 1980, Quantum Field Theory, McGraw-Hill, New York.

    Google Scholar 

  • Johnson, M.H., and B.A. Lippmann: 1949, ‘Motion in a Constant Magnetic Field’, Phys. Rev. 76, 828.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Johnson, M.H., and B.A. Lippmann: 1950, ‘Relativistic Motion in a Magnetic Field’, Phys. Rev. 77, 702.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kalnins, E.G., W. Miller, Jr., and G.C. Williams: 1986, ‘Matrix Operator Symmetries of the Dirac Equation and Separation of Variables’, J. Math. Phys. 27, 1893.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kobe, D.H., and K.-H. Yang: 1980, ‘Gauge-Invariant Non-Relativistic Limit of an Electron in a Time-Dependent Electromagnetic Field’, J. Phys. A 13, 3171.

    Article  ADS  Google Scholar 

  • Kovalyov, M., and M. Légaré: 1990, ‘The Dirac Equation in Robertson-Walker Spaces: A Class of Solutions’, J. Math. Phys. 31, 191.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lam, L.: 1970a, ‘New Exact Solutions of the Dirac Equation’, Can. J. Phys. 48, 1935.

    Article  ADS  Google Scholar 

  • Lam, L.: 1970b, ‘Dirac Electron in Orthogonal Electric and Magnetic Fields’, Lett. Nuovo Cimento 3, 292.

    Article  Google Scholar 

  • Landau, L.D., and E.M. Lifshitz: 1977, Quantum Mechanics, 3rd ed., Pergamon Press, New York.

    Google Scholar 

  • Lipkin, H.J., and A. Tavkhelidze: 1965, ‘Magnetic Moments of Relativistic Quark Models of Elementary Particles’, Phys. Lett. 17, 331.

    Article  MathSciNet  ADS  Google Scholar 

  • Margenau, H.: 1940, ‘Relativistic Magnetic Moment of a Charged Particle’, Phys. Rev. 57, 383.

    Article  ADS  Google Scholar 

  • Melrose, D.B., and A.J. Parle: 1983, ‘Quantum Electrodynamics in Strong magnetic Fields. I.Electron States’, Aust. J. Phys. 36, 755.

    ADS  Google Scholar 

  • Morse, P.M.: 1929, ‘Diatomic Molecules According to the Wave Mechanics II. Vibrational Levels’, Phys. Rev. 34, 57.

    Article  ADS  MATH  Google Scholar 

  • Nieto, M.M.,and P.L. Taylor: 1985, ‘A Solution (Dirac Electron in Crossed Constant Electric and Magnetic Fields) that Has Found a Problem (Relativistic Quantized Hall Effect)’, Am. J. Phys. 53, 234.

    Article  MathSciNet  ADS  Google Scholar 

  • Pankratov, O.A.: 1987, ‘Production and Capture of Neutrons in an Electric Field’, JETP Lett. 45, 401.

    ADS  Google Scholar 

  • Pauli, W.: 1932, ‘Diracs Wellengleichung des Elektrons und geometrische optik’, Helv. Phys. Acta 5, 179.

    Google Scholar 

  • Plesset, M.S.: 1932, ‘The Dirac Electron in Simple Fields’, Phys. Rev. 41, 278.

    Article  ADS  Google Scholar 

  • Predazzi, E., and T. Regge: 1962, ‘The Maximum Analyticity Principle in the Angular Momentum’, Nuovo Cimento 24, 518.

    Article  MathSciNet  MATH  Google Scholar 

  • Rabi, I.I.: 1928, ‘Das freie Elektron im homogenen Magnetfeld nach der Diracschen Theorie’, Z. Phys. 49, 507.

    Article  ADS  MATH  Google Scholar 

  • Rafanelli, K., and R. Schiller: 1964, ‘Classical Motions of Spin- 1/2 Particles’, Phys. Rev. 135, B279.

    Article  MathSciNet  ADS  Google Scholar 

  • Rainville, E.D.: 1960, Special Functions, Macmillan, New York.

    MATH  Google Scholar 

  • Redmond, P.J.: 1965, ‘Solution of the Klein-Gordon and Dirac Equations for a Particle with a Plane Electromagnetic Wave and a Parallel Magnetic Field’, J. Math. Phys. 6, 1163.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Rose, M.E.: 1961, Relativistic Electron Theory, Wiley, New York.

    MATH  Google Scholar 

  • Rosen, N., and P.M. Morse: 1932, ‘On the Vibrations of Polyatomic Molecules’, Phys. Rev. 42, 210.

    Article  ADS  Google Scholar 

  • Rubinow, S.I., and J.B. Keller: 1963, ‘Asymptotic Solution of the Dirac Equation’, Phys. Rev. 131, 2789.

    Article  MathSciNet  ADS  Google Scholar 

  • Sauter, F.: 1931, ‘Über des Verhalten eines Elektrons in homogenen elektrischen Feld nach der relativistichen Theorie Dirac’s’, Z. Phys. 69, 742.

    Article  ADS  Google Scholar 

  • Schwinger, J.: 1948, ‘On the Polarization of Fast Neutrons’, Phys. Rev. 73, 407.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Shishkin, G.V., and V.M. Villalba: 1989a, ‘Dirac Equation in External Vector Fields: Separation of Variables’, J. Math. Phys. 30, 2132.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Shishkin, G.V., and V.M. Villalba: 1989b, ‘Dirac Equation in External Vector Fields: New Exact Solutions’, J. Math. Phys. 30, 2373.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Slater, J.C.: 1960, Quantum Theory of Atomic Structure, Vol.II, McGraw-Hill, New York.

    Google Scholar 

  • Stanciu, G.N.: 1966, ‘Solvable Vector and Scalar Potentials for the Dirac Equation’, Phys. Lett. 23, 232.

    Article  ADS  Google Scholar 

  • Stanciu, G.N.: 1967, ‘Further Exact Solutions of the Dirac Equation’, J. Math. Phys. 8, 2043.

    Article  ADS  Google Scholar 

  • Størmer, C.: 1930, ‘Periodische Elektronenbahnen im Felde eines Elementarmagneten und ihre Anwendung auf Brüches Modell versuche und auf Eschenhagens Elementarwellen des Erdmagnetismus’, Z. Astrophys. 1, 237.

    ADS  Google Scholar 

  • Su, R.-K., and Y. Zhang: 1984, ‘Exact Solutions of the Dirac Equation with a Linear Scalar Confining Potential in a Uniform Electric Field’, J. Phys. A 17, 851.

    Article  MathSciNet  ADS  Google Scholar 

  • Ternov, I.M., V.G. Bagrov, and V. Chi. Zhukovskii: 1966, ‘Synchrotron Radiation from an Electron Having a Vacuum Magnetic Moment’, Moscow Univ. Bull. 21, 21.

    Google Scholar 

  • Thomas, L.T.: 1927, ‘The Kinematics of an Electron with an Axis’, Phil. Mag. 3, 1.

    MATH  Google Scholar 

  • Tsai, W.: 1971, ‘Motion of Spin-1 Particles in a Homogeneous Magnetic Field—Multispinor Formalism’, Phys. Rev. D 4, 3652.

    Article  ADS  Google Scholar 

  • Tsai, W., and A. Yildiz: 1971, ‘Motion of Charged Particles in a Homogeneous Magnetic Field’, Phys. Rev. D 4, 3643.

    Article  ADS  Google Scholar 

  • Vasconcelos, V.: 1971, ‘Dirac Particle in a Scalar Coulomb Field’, Rev. Bras. Fíz. 1, 441.

    Google Scholar 

  • Volkov, D.M.: 1935, ‘Über eine Klasse Von Lösungen der Diracschen Gleichung’, Z. Phys. 94, 250.

    Article  ADS  MATH  Google Scholar 

  • Zel’dovich, Ya.B., and V.S. Popov: 1972, ‘Electronic Structure of Superheavy Atoms’, Sov. Phys. Uspekhi 14, 673.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grandy, W.T. (1991). Further Electromagnetic Interactions. In: Relativistic Quantum Mechanics of Leptons and Fields. Fundamental Theories of Physics, vol 41. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3302-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3302-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5458-4

  • Online ISBN: 978-94-011-3302-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics