Skip to main content

Solubility and dissolution of iron oxides

  • Chapter
Iron Nutrition and Interactions in Plants

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 43))

Abstract

In most soils, FeIII oxides (group name) are the common source of Fe for plant nutrition. Since this Fe has to be supplied via solution, the solubility and the dissolution rate of the Fe oxides are essential for the Fe supply. Hydrolysis constants and solubility products (Ksp) describing the effect of pH on FeIII ion concentration in solution are available for the well-known Fe oxides occurring in soils such as goethite, hematite, ferrihydrite. Ksp values are usually extremely low ((Fe3+). (OH)3 = 10-37 — 10-44). However, for each mineral type, Ksp may increase by several orders of magnitude with decreasing crystal size and it decreases with increasing Al substitution assuming ideal solid solution between the pure end-members. Based on such calculations a poorly crystalline goethite with a crystal size of 5 nm may well reach the solubility of ferrihydrite. The variations in Ksp are of relevance for soils because crystal size and Al substitution of soil Fe oxides vary considerably and can now be determined relatively easily.

The concentration of Fe2+ in soil solutions is often much higher than that of Fe(III) ions. Therefore, redox potential strongly influences the activity of FeII. At a given pH and Eh, the activity of FeII is higher the higher Ksp of the FeIII oxide and thus also varies with the type of Fe oxide present.

Besides the solubility, it is the dissolution rate which governs the supply of soluble Fe to the plant roots. Dissolution of Fe oxides takes place either by protonation, complexation or, most important, by reduction. Numerous dissolution rate studies with various FeIII oxides were conducted in strong mineral acids (protonation) and they have shown that besides the Fe oxide species, crystal size and/or crystal order and substitution are important determinative factors. For example, in soils, small amounts of a more highly soluble meta- or instable Fe oxide such as ferrihydrite with a large specific surface (several hundred m2g_1) may be essential for the Fe supply to the plant root. Its higher dissolution rate can also be used to quantify its amount in soils. Ferrihydrite can be an important component in soils with high amounts of organic matter and/or active redox dynamics, whereas highly aerated and strongly weathered soils are usually very low in ferrihydrite. On the other hand, dissolution rates of goethites decrease as their Al substitution increases.

Much less information exists on the rate of reductive and chelative dissolution of Fe oxides which generally simulate soil conditions better than dissolution by protonation. Here again, type of oxide, crystal size and substitution are important factors. Organic anions such as oxalate, which are adsorbed at the surface, may weaken the Fe3+-O bonds and thereby increase reductive dissolution. As often observed in weathering, the dissolution features of the crystals appear to follow zones of weakness in the crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barrón V and Torrent J 1987 Origin of red-yellow mottling in a ferric acrisol of southern Spain. Z. Pflanzenernaehr. Bodenkd. 150, 308–313.

    Article  Google Scholar 

  • Baumgartner E, Blesa M A and Maroto A J G 1982 Kinetics of the dissolution of magnetite in the thioglycolic acid solutions. J. Chem. Soc. Dalton Trans. 1649–1654.

    Google Scholar 

  • Bigham J M, Heckendorn S E, Smeck N E and Jaynes W F 1990 Relative stability of iron oxides in two soils with contrasting colors.

    Google Scholar 

  • Blesa MA, Borghi E B, Maroto A J G and Regazzoni A E 1984 Adsorption of EDTA and iron-EDTA complexes on magnetite and the mechanism of dissoluton of magnetite by EDTA. J. Colloid Interface Sci. 98, 295–305.

    CAS  Google Scholar 

  • Blesa M A and Maroto A J G 1985 The nature of reactive sites in the dissolution of metal oxides by acid chelating agents in aqueous solution. In Reactivity of Solids. Eds. P Barret and L-C Dufour. pp 529–531. Elsevier, Amsterdam.

    Google Scholar 

  • Blesa M A and Maroto A J G 1986 Dissolution of metal oxides. J. Chimie Physique 83, 757–764.

    CAS  Google Scholar 

  • Bohn H L 1967 The (Fe)(OH)3 ion product in suspensions of acid soils. Soil Sci. Soc. Am. Proc. 31, 641–644.

    Article  CAS  Google Scholar 

  • Bruyère V I E and Blesa M A 1985 Acidic and reductive dissolution of magnetite in aqueous sulfuric acid. J. Elec-troanal. Chem. 182, 141–156.

    Article  Google Scholar 

  • Chang H and Matijević E 1983 Interactions of metal hydrous oxides with chelating agents. J. Colloid Interface Sci. 92, 479–488.

    Article  CAS  Google Scholar 

  • O’Connor G A, Lindsay W L and Olsen S R 1971 Diffusion of iron and iron chelates in soil. Soil Sci. Soc. Am. Proc. 35, 407–410.

    Article  Google Scholar 

  • Cornell R M and Giovanoli R 1988 Acid dissolution of akaganeite and lepidocrocite: The effect on crystal morphology. Clays Clay Min. 36, 385–390.

    Article  CAS  Google Scholar 

  • Cornell R M, Posner A M and Quirk J P 1974 Crystal morphology and the dissolution of goethite. J. Inorg. Nucl. Chem. 36, 1937–1946.

    Article  CAS  Google Scholar 

  • Cornell R M, Posner A M and Quirk J P 1975 The complete dissolution of goethite. J. Appl. Chem. Biotechnol. 25, 701–706.

    Article  CAS  Google Scholar 

  • Cornell R M, Posner A M and Quirk J P 1976 Kinetics and mechanisms of the acid dissolution of goethite (α-FeOOH). J. Inorg. Nucl. Chem. 38, 563–567.

    Article  CAS  Google Scholar 

  • Cornell R M and Schindler P W 1987 Photochemical dissolution of goethite in acid/oxalate solution. Clays Clay Min. 35, 347–352.

    Article  CAS  Google Scholar 

  • Cornell R M and Schwertmann U 1979 Influence of organic anions on the crystallization of ferrihydrite. Clays Clay Min. 27, 402–410.

    Article  CAS  Google Scholar 

  • Endredy A S de 1963 Estimation of free iron oxides in soils and clay by a photolytic method. Clay Min. Bull. 5, 209–217.

    Article  Google Scholar 

  • Ferrier A 1966 Influence de l’état de division de la goethite et de l’oxyde ferrique sur leurs chaleurs de réaction: Rev. Chimie minérale 3, 587–615.

    CAS  Google Scholar 

  • Fey M V 1983 Hypothesis for the pedogenic yellowing of red soil materials. Techn. Commun. Dept. of Agric. and Fisheries, Rep. South Africa 18, 130–136.

    Google Scholar 

  • Fischer W R 1973 Die Wirkung von zweiwertigem Eisen auf Lösung und Umwandlung von Eisen(III)-hydroxiden. Pseudogley and Gley. Eds. E Schlichting and U Schwertmann. Proc. Int. Soil Sci. Soc. Trans., Stuttgart, 37–44.

    Google Scholar 

  • Fischer W R 1987 Standard potentials (E0) of iron(III) oxides under reducing conditions. Z. Pflanzenernaehr. Bodenkd. 150, 286–189.

    Article  CAS  Google Scholar 

  • Fischer W R 1988 Microbiological reactions of iron in soils. Iron in soils and clay minerals, Eds. J W Stucki, B A Goodman and U Schwertmann, NATO ASI Ser. 217, 715–748.

    Google Scholar 

  • Fischer W R and Pfanneberg T 1984 An improved method for testing the rate of iron(III) oxide reduction by bacteria. Zbl. Mikrobiol. 139, 163–166.

    CAS  Google Scholar 

  • Hamilton W C and Ibérs J A 1963 Structures of HCrO2 and DCrO2. Acta Cryst. 16, 1209–1212.

    Article  CAS  Google Scholar 

  • Kabai J 1973 Determination of specific activation energies of metal oxides and metal oxide hydrates by measurement of the rate of dissolution. Acta Chim. Acad. Scientiarum Hungaricae. 78, 57–73.

    CAS  Google Scholar 

  • Karim Z 1984 Characteristics of ferrihydrites formed by oxidation of FeCl2 solutions containing different amounts of silica. Clays Clay Min. 32, 181–184.

    Article  CAS  Google Scholar 

  • Lakind J S and Stone A T 1989 Reductive dissolution of goethite by phenolic reductants. Geochim. Cosmochim. Acta 59, 961–971.

    Article  Google Scholar 

  • Langmuir D 1969 The Gibbs free energies of substances in the system Fe-O2-H2O-CO2 at 25°C. U.S. Geological Survey Prof. Paper 650B, 180–184.

    Google Scholar 

  • Lieser K H and Schroeder H 1959 Die Kinetik der Auflösung des wasserfreien Eisen(III)-sulfats in Eisen(II)-ionen-haltigen Lösungen. Z. Elektrochem. 64, 252–257.

    Google Scholar 

  • Lim-Nunez R and Gilkes R J 1987 Acid dissolution of synthetic metal-containing goethites and hematites. Proc. of the Int. Clay Conf., Denver, 1985. Eds. L G Schultz, H van Olphen and F A Mumpton. The Clay Min. Soc., Indiana, pp 197–204.

    Google Scholar 

  • Lindsay W L 1988 Solubility and redox equilibria of iron compounds in soils. Iron in soils and clay minerals. Eds. J W Stucki, B A Goodman and U Schwertmann. NATO ASI Ser. 217, 37–62.

    Google Scholar 

  • Litter M I and Blesa M A 1987 Photodissolution of iron oxides. I. Maghemite in EDTA solutions, (unpubl. manuscript).

    Google Scholar 

  • Loeppert R H and Hallmark C T 1985 Indigenous soil properties influencing the availability of Fe in calcareous hot spots. Soil Sci. Soc. Am. J. 49, 597–603.

    Article  CAS  Google Scholar 

  • Marschner H, Römheld V and Kissel M 1986 Different strategies in higher plants in mobilization and uptake of iron. J. Plant Nutr. 9, 695–713.

    Article  CAS  Google Scholar 

  • Mengel K, Bübl W and Scherer H W 1984 Iron distribution in vine leaves with HCO3-induced chlorosis. J. Plant Nutr. 7, 715–724.

    Article  CAS  Google Scholar 

  • Munch J C and Ottow J C G 1982 Einfluß von Zellkontakt und Eisen(III)-Oxidform auf die bakterielle Eisenreduktion. Z. Pflanzenernaehr. Bodenkd. 145, 66–77.

    Article  CAS  Google Scholar 

  • Nätscher L and Schwertmann U 1990 Proton buffering in organic horizons of acid forest soils. Geoderma (In press).

    Google Scholar 

  • Rubio J and Matijević E 1979 Interactions of metal hydrous oxides with chelating agents. J. Colloid Interface Sci. 68, 408–421.

    Article  CAS  Google Scholar 

  • Rueda E H, Grassi R L and Blesa M A 1985 Adsorption and dissolution in the system goethite/aqueous EDTA. J. Colloid Interface Sci. 106, 243–246.

    Article  CAS  Google Scholar 

  • Schott J, Brantley S, Crerar D, Guy Ch, Borcsik M and Willaime Ch 1989 Dissolution kinetics of strained calcite. Geochim. Cosmochin. Acta 53, 373–382.

    Article  CAS  Google Scholar 

  • Schwab A P and Lindsay W L 1983 Effect of redox on the solubility and availability of iron. Soil Sci. Soc. Am. J. 47, 201–205.

    Article  CAS  Google Scholar 

  • Schwertmann U 1959 Die fraktionierte Extraktion der freien Eisenoxyde in Böden, ihre mineralogischen Formen und ihre Entstehungsweisen. Z. Pflanzenernaehr. Dueng. Bodenkd. 84, 194–204.

    Article  CAS  Google Scholar 

  • Schwertmann U 1964 Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. Z. Pflanzenernaehr. Dueng. Bodenkd. 105, 194–202.

    Article  CAS  Google Scholar 

  • Schwertmann U 1966 Inhibitory effect of soil orgnaic matter on the crystallization of amorphous ferric hydroxide. Nature 212, 645–646.

    Article  CAS  Google Scholar 

  • Schwertmann U 1984 The influence of aluminium on iron oxides. IX. Dissolution of Al-goethites in 6 M HCl. Clay Min. 19, 9–19.

    Article  CAS  Google Scholar 

  • Schwertmann U, Cambier P and Murad E 1985 Properties of goethites of varying crystallinity. Clays Clay Min. 33, 369–378.

    Article  CAS  Google Scholar 

  • Schwertmann U, Carlson L and Murad E 1987 Properties of iron oxides in two Finnish lakes in relation to the environment of their formation. Clays Clay Min. 35, 297–304.

    Article  CAS  Google Scholar 

  • Schwertmann U, Schulze D G and Murad E 1982 Identification of ferrihydrite in soils by dissolution kinetics, differential X-ray diffraction and Mössbauer spectroscopy. Soil Sci. Soc. Am. J. 46, 869–875.

    Article  CAS  Google Scholar 

  • Schwertmann U and Taylor R M 1989 Iron oxides. Minerals in Soil Environments. Eds. J B Dixon and S B Weed. Soil Sci. Soc. Am., Book Series: 1, 379–438.

    Google Scholar 

  • Schwertmann U and Thalmann H 1976 The influence of Fe(II), Si and pH on the formation of lepidocrocite and ferrihydrite during oxidation of aqueous FeCl2 solutions. Clay Min. 11, 189–200.

    Article  CAS  Google Scholar 

  • Sidhu P S, Gilkes R J, Cornell R M, Posner A M and Quirk J P 1981 Dissolution of iron oxides and oxyhydroxides in hydrochloric and perchloric acids. Clays Clay Min. 29, 269–276.

    Article  CAS  Google Scholar 

  • Sinha M K, Dhillon S K, Dhillon K S and Dyanand S 1978 Solubility relationships of iron, manganese, copper and zinc in alkaline and calcareous soils. Aust. J. Soil Res. 16, 19–26.

    Article  CAS  Google Scholar 

  • Stone A T and Morgan J J 1987 Reductive dissolution of metal oxides. Aquatic surface chemistry. Ed. W Stumm. J. Wiley and Sons, NY. pp 221–254.

    Google Scholar 

  • Stumm W and Furrer G 1987 The dissolution of oxides and aluminum silicates: Examples of surface-coordination-controlled kinetics. In Aquatic surface chemistry. Ed. W Stumm, pp 197–219. J. Wiley and Sons, New York.

    Google Scholar 

  • Stumm W, Furrer G, Wieland E and Zinder B 1985 The effects of complex-forming ligands on the dissolution of oxides and aluminosilicates. In The Chemistry of Weathering. Ed. J I Drever. pp 55–74. D. Reidel, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Tamm O 1932 Über die Oxalat-Methode in der chemischen Bodenanalyse. Medd. Stat. Skogsforsoks. Stockholm 27, 1–20.

    Google Scholar 

  • Torrent J, Schwertmann U and Barrón V 1987 The reductive dissolution of synthetic goethite and hematite in dithionite. Clay Min. 22, 329–337.

    Article  CAS  Google Scholar 

  • Trolard F and Tardy Y 1987 The stabilities of gibbsite, boehmite, aluminous goethite and aluminous hematites in bauxites, ferricretes and laterites as a function of water activity, temperature and particle size. Geochim. Cos-mochim. Acta 51, 945–957.

    Article  CAS  Google Scholar 

  • Vempati R K and Loeppert R H 1985 Structure and transformation of siliceous ferrihydrite. Agron. Abstr. Amer. Soc. Agron., Madison WI, 52.

    Google Scholar 

  • Vempati R K and Loeppert R H 1986 Synthetic ferrihydrite as a potential Fe amendment in calcareous soils. J. Plant Nutr. 9, 1039–1052.

    Article  CAS  Google Scholar 

  • Vempati R K and Loeppert R H 1988 Chemistry and mineralogy of Fe-containing oxides and layer silicates in relation to plant available iron. J. Plant Nutr. 11, 1157–1574.

    Article  Google Scholar 

  • Yapp C J 1983 Effects of AlOOH-FeOOH solid solution on goethite-hematite equilibrium. Clays Clay Min. 31, 239–240.

    Article  CAS  Google Scholar 

  • Zhang Y, Kallay N, Matijević E 1985 Interactions of metal hydrous oxides with chelating agents. VII. Hematite-oxalic and citric acid systems. Langmuir 1, 201–206.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schwertmann, U. (1991). Solubility and dissolution of iron oxides. In: Chen, Y., Hadar, Y. (eds) Iron Nutrition and Interactions in Plants. Developments in Plant and Soil Sciences, vol 43. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3294-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3294-7_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5455-3

  • Online ISBN: 978-94-011-3294-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics