Advertisement

Spectral Properties of Adiabatically Perturbed Differential Operators with the Periodic Coefficients

  • V. S. Buslaev
Part of the Mathematical Physics Studies book series (MPST, volume 12)

Abstract

We describe the asymptotic structure of the spectrum and the asymptotic behavior of the eigenfunctions of the operators
$$Hz = - {z_{xx}} + p(x)z + v(\varepsilon x)z, $$
p is periodic, 0 ‹ ε “ 1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buslaev V.S. (1984) ‘Adiabatic perturbation of a periodic potential’, Teor. Mat. Fiz. 58, 233–243MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Buslaev V.S., Dmitrieva L.A. (1987) ‘Adiabatic perturbation of a periodic potential. II’, Teor. Mat. Fiz. 73, 430–442MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Buslaev V.S. (1987) ‘A semiclassical aproximation to the equation with periodic coefficients’, Sov. Math. Uspekhi, 42, 77–96MathSciNetGoogle Scholar
  4. 4.
    Guillot J.C., Ralston J., Trubovitz E. (1988) ‘Semiclassical asymptotics in solid state physics’, Comm. Math. Phys., 116, 401–415Google Scholar
  5. 5.
    Buslaev V.S., Dmitrieva L.A. (1989) ‘Bloch electron in an external field’, Algebra and analysis, 1 N2, 1–29Google Scholar
  6. 6.
    Buslaev V.S., Dmitrieva L.A. (1989) ‘Bloch electrons in an external electric field’ in P. Exner, P. Seba (eds.), Schrodinger operators, standard and nonstandard, World Scientific, Singapore, N. J., L., Hong Kong, pp. 101–129Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • V. S. Buslaev
    • 1
  1. 1.Institute of PhysicsLeningrad UniversityLeningradUSSR

Personalised recommendations