Advertisement

Reduction and Geometric Prequantization at the Cotangent Level

  • Mircea Puta
Part of the Mathematical Physics Studies book series (MPST, volume 12)

Abstract

Let (M,ω) be a symplectic manifold (possibly infinite dimensional), G a Lie group (possibly infinite dimensional) with Lie algebra G and Ø :G M → M a symplectic action of G on M, with and Ad * -equivariant momentum map J: M → G *i.e.

Keywords

Symplectic Manifold Cotangent Bundle Geometric Quantization Reduce Phase Space Hamiltonian Vector Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Abraham, R., Marsden, J.: Foundations of mechanics, Second Edition, Addison Wesley 1978.zbMATHGoogle Scholar
  2. [2]
    Blau, M.: On the geometric quantization of constrained systems, Class.Quantum Gray. 5 (1988) 1033–1044.MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. [3]
    Gotay, M.J.: Constraints. Reduction and Quantization, J.Math.Phys. 27, (1986), 2051–2067.MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. [4]
    Kummer, M.: On the construction of the reduced phase space of a Hamiltonian system with symmetry, Indiana Univ.Math.Journ. 30 (1981), 281–291.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Marsden, J., Weinstein, A.: Reduction of symplectic manifolds with symmetry, Raports on Math.Phys. 5 (1974), 121–130.MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. [6]
    Marsden, J., Weinsten, A.: The Hamiltonian structure of the Maxwell-Vlasov equations, Physica 4D (1982), 394–406.zbMATHGoogle Scholar
  7. [7]
    Puta, M.: On the reduced phase space of a cotangent bundle, Lett.Math.Phys. 8 (1984), 189–194.MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. [8]
    Puta, M.: Geometric quantization of the Heavy Top, Lett.Math.Phys. 11 (1986), 105–112, Erratum and Addendum, 12 (1986) 169.MathSciNetGoogle Scholar
  9. [9]
    Puta, M.: Geometric quantization of the reduced phase space of the cotangent bundle, Proceedings of the Conference 24–30 August (1986) Brno, Czechoslovakia, Brno (1987), 273–282.Google Scholar
  10. [10]
    Puta, M.: On the geometric prequantization of Maxwell-equations, Lett.Math.Phys. 13 (1987) 99–103.MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. [11]
    Puta, M.: The planar n-body problem and geometric quantization, The XVIII-th National Conference on Geometry and Topology, Oradea-Felix, October 4–7, 1987, Preprint No. 2 (1988), 151–154.MathSciNetGoogle Scholar
  12. [12]
    Puta, M.: Geometric quantization of the sperical pendulum, Serdica Bulgaricae Math.Publ. 14 (1988) 198–201.MathSciNetzbMATHGoogle Scholar
  13. [13]
    Puta, M.: Geometric prequantization of the Einstein’s vacuum field equations (to appear).Google Scholar
  14. [14]
    Puta, M.: Dirac constrained mechanical systems and geometric prequantization (to appear).Google Scholar
  15. [15]
    Satzer, M.J.: Canonical reduction of mechanical systems invariant under abelian group actions with an application to celestical mechanics, Indiana Univ.Math.Journ. 26 (1977), 951–976.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    Sniatycki, J.: Constraints and quantization, Lect.Notes in Math., vol. 1037 (1983) 301–334.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • Mircea Puta
    • 1
  1. 1.Department of Geometry-TopologyUniversity of TimişoaraTimişoaraRomania

Personalised recommendations