Skip to main content

Eigenfunction Expansions for Hyperbolic Laplacians

  • Chapter
Recent Developments in Quantum Mechanics

Part of the book series: Mathematical Physics Studies ((MPST,volume 12))

  • 238 Accesses

Abstract

The geometry near infinity of a non-compact complete Riemannian manifold is reflected in the essential spectrum its Laplace operator. The nature of this correspondence, however, is subtle, and the manifolds whose Laplace operators have a well understood spectral theory are ones whose structure near infinity is simple. In this lecture I would like to explain some recent work of P. Hislop, P. Perry and myself on the Laplacian for three-dimensional non-compact hyperbolic manifolds. These manifolds are are simple near infinty, in the sense of being geometrically finite, but somewhat less simple than the ones that had been considered previously, in that they have cusps of non-maximal rank.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Agmon, On the spectral theory of the Laplacian on non-compact hyperbolic manifolds, Journées `Equations aux derivées partielles’ (Saint-Jean de Monts, 1987 ), Exp. No. XVII. École Polytechnique, Palaiseau, 1987.

    Google Scholar 

  2. S. Agmon, Spectral Theory of Schrödinger Operators on Euclidean and Non-Euclidean Spaces C.P.A.M. 39 (1986), Number S, Supplement.

    Google Scholar 

  3. H.L. Cycon, R.G. Froese, W. Kirsch and B. Simon, Schrödinger Operators, with Application to Quantum Mechanics and Global Geometry, Springer Texts and Monographs in Physics, Springer-Verlag, New York, 1986.

    Google Scholar 

  4. L. Faddeev, Expansion in eigenfunctions of the Laplace operator in the fundamental domain of a discrete group on the Labacevskii plane, Trudy Moscow. Mat. Obshch. 17, (1967), 323–350.

    MathSciNet  MATH  Google Scholar 

  5. FHP1] R. Froese, P. Ilislop, P. Perry, A Mourre Estimate and Related Bounds for Hyperbolic Manifolds with Cusps of Non-maximal Rank,to appear in J. Funct. Anal.

    Google Scholar 

  6. R. Froese, P. Hislop, P. Perry, The Laplace Operator on a Hyperbolic Three Manifold with Cusps of Non-Maximal Rank,preprint.

    Google Scholar 

  7. P. Lax and R.S. Phillips, Scattering Theory for Automorphic Functions, Annals of Math Studies 87, Princeton University Press, 1976.

    Google Scholar 

  8. P. Lax. and R.S. Phillips, Translation representation for automorphic solutions of the non-Euclidean wave equation, I, II and III, Comm. Pure Appl. Math. 37, 303–328, 1984

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Lax. and R.S. Phillips, Translation representation for automorphic solutions of the non-Euclidean wave equation, I, II and III, Comm. Pure Appl. Math. 37, 779–813, 1984

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Lax. and R.S. Phillips, Translation representation for automorphic solutions of the non-Euclidean wave equation, I, II and III, Comm. Pure Appl. Math. 38, 179–208, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Lax and R.S. Phillips, Translation representation for automorphic solutions of the non-Euclidean wave equation, IV,Preprint

    Google Scholar 

  12. H. Maass, Ober eine neue Art von nichtanalytischen automorphen Functionen und die Bestimmumng Dirichletscher Reihen durch Functionalgleichungen, Math. Ann. 121, (1949), 141–183.

    Article  MathSciNet  MATH  Google Scholar 

  13. N. Mandouvalos, The Theory of Eisenstein Series for Kleinian Groups, In The Selberg Trace Formula and Related Topics, Hejhal, Sarnak and Terras eds., (Contemporary Mathematics 53, 1986 ) 357–370.

    Chapter  Google Scholar 

  14. N. Mandouvalos, Scattering operator, inner product formula, and “Maass-Selberg” relations for Kleinian groups, AMS Memoir 400, 1989.

    Google Scholar 

  15. N. Mandouvalos, Spectral theory and Eisenstein series for Kleinian groups, Cambridge Unversity preprint, 1986.

    Google Scholar 

  16. R. Mazzeo and R. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature,J. Funct. Anal. 75, 260–310,1987.

    Article  MathSciNet  Google Scholar 

  17. S.J. Patterson, The Laplacian Operator on a Riemann Surface , I, II and III, Compositio Math. 31 (1975), 83–107; 32 (1976), 71–112, 33 (1976), 227–259.

    Google Scholar 

  18. P. Perry, The Laplace operator on a hyperbolic manifold, II. Eisenstein series and the scattering matrix, J. Reine Angew. Math. 398, 67–91, 1989.

    MathSciNet  MATH  Google Scholar 

  19. W. Roelcke, Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene, Teil I, Math. Ann. 167 (1966), 292–337: Teil II, Math. Ann. 168, (1967), 261–324.

    Google Scholar 

  20. A. Terras, Harmonic Analysis on Symmetric Spaces and Applications I, Springer-Verlag, 1985.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Froese, R. (1991). Eigenfunction Expansions for Hyperbolic Laplacians. In: Boutet de Monvel, A., Dita, P., Nenciu, G., Purice, R. (eds) Recent Developments in Quantum Mechanics. Mathematical Physics Studies, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3282-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3282-4_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5449-2

  • Online ISBN: 978-94-011-3282-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics