Advertisement

Spectral Properties of Bent Quantum Wires

  • P. Exner
Part of the Mathematical Physics Studies book series (MPST, volume 12)

Abstract

Spectral properties for Hamiltonians describing pure-semiconductor quantum wires are discusssed. The curvature-induced bound states that exist in thin infinitely long wires are shown to turn into resonances when a finite-length wire is joined to a pair of macroscopic electrodes.

Keywords

Quantum Wire Minimax Estimate Fixed Positive Number Free Resolvent Singular Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumgaertel, H. and Demuth, M. (1976) Perturbations of unstable eigenvalues of finite multiplicity, J.Funct.Anal. 22, 187–203.MATHCrossRefGoogle Scholar
  2. Bulla, W. and Gesztesy, F. (1985) Deficiency indices and singular boundary conditions, J.Math.Phys. 26, 2520–2528.MathSciNetADSMATHCrossRefGoogle Scholar
  3. Duclos, P. and Exner, P. (1990) Bound states in curved quantum waveguides in two and three dimensions, in preparation.Google Scholar
  4. Exner, P. (1990) A model of resonance scattering on curved quantum wires, Annalen der Physik, to appear.CrossRefGoogle Scholar
  5. Exner, P. and Seba, P. (1987) Quantum motion on a half line connected to a plane, J.Math.Phys. 28, 386–391, 2304.MathSciNetADSMATHCrossRefGoogle Scholar
  6. Exner, P. and Seba, P. (1989) Bound states in curved quantum waveguides, J.Math.Phys. 30, 2574–2580.MathSciNetADSMATHCrossRefGoogle Scholar
  7. Exner, P., Seba, P. and Stovicek, P. (1989) On existence of a bound state in an L-shapes waveguide, Czech.J.Phys. B30, 1181–1191.ADSCrossRefGoogle Scholar
  8. Howland, J. (1971) Spectral concentration and virtual poles II, Trans.Amer.Math.Soc. 162, 141–156.MathSciNetCrossRefGoogle Scholar
  9. Kato, T. (1966) Wave operators and similarity for some non-selfadjoint operators, Math.Annal. 162, 258–279.MATHCrossRefGoogle Scholar
  10. Klaus, M. (1977) On the bound state of Schrödinger operators in one dimension, Ann.Phys. 108, 288–300.Google Scholar
  11. Landauer, R. (1981) Can a length of perfect conductor have a resistance?, Phys.Lett. A85, 91–93.ADSGoogle Scholar
  12. Newton, R.G. (1983) Bounds on the number of bound states for the Schrödinger equation in one or two dimensions, J.Oper.Theory 10, 119–125.MATHGoogle Scholar
  13. Temkin, H., et al. (1987) Low temperature photoluminiscence from InGaAs/InP quantum wires and boxes, Appl.Phys.Lett. 50, 413–415.ADSCrossRefGoogle Scholar
  14. Timp, G., et al. (1988) Propagation around a bend in a multichannel electron waveguide, Phys.Rev.Lett. 60, 2081–2084.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • P. Exner
    • 1
  1. 1.Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubnaUSSR

Personalised recommendations