Abstract
Many useful descriptions of dynamical processes in polyatomic molecular systems are based on a reaction path approach. I.e., the potential energy surface is approximated as a multidimensional harmonic valley about a (curved) line in the 3N-6 dimensional space of the N atom system along which the motion is thought to be most localized. These lectures briefly review this reaction path methodology, but then focus mainly on some more recent approaches that go beyond the reaction path point of view. In particular, it is shown how empirical potential functions can be combined with selected ab initio calculations within an empirical valence bond model in order to construct a globalpotential energy surface for polyatomic reactions. Two other topics that are discussed are a new way of handling zero point energy in a classical trajectory simulation of polyatomic dynamics and a new model for including tunneling effects in a trajectory simulation.
Keywords
- Potential Energy Surface
- Reaction Path
- Vibrational Energy
- Point Energy
- Polyatomic Molecule
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
See, for example, W. J. Hehre, L. Radom, P. v.R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, N.Y., 1986.
H. F. Schaefer, The Electronic Structure of Atoms and Molecules, Addison-Wesley, Reading, MA, 1972.
J. Z. H. Zhang and W. H. Miller, Chem. Phys. Lett. 140, 329 (1987).
J. Z. H. Zhang and W. H. Miller, J. Chem. Phys. 88, 4549 (1988).
J. Z. H. Zhang, S. I. Chu, and W. H . Miller, J, Chem, Phys. 88, 6233 (1988).
J. Z. H. Zhang and W. H. Miller, Chem. Phys. Lett. 153, 465 (1988).
J. Z. H. Zhang and W. H. Miller, J. Chem. Phys. 91, 317 (1989).
K. Haug, D. W. Schwenke, Y. Shima, D. G. Truhlar, J. Z. H. Zhang, and D. J. Kouri, J. Phys. Chem. 90, 6757 (1986).
D. W. Schwenke, K. Haug, D. G. Truhlar, Y. Sun, J. Z. H. Zhang, and D. J. Kouri, J. Phys. Chem. 91, 6080 (1987).
For a review, see G. C. Schatz, Ann. Rev. Phys. Chem. 39, 317 (1988).
W. H. Miller, N. C. Handy, and J. E. Adams, J. Chem. Phys. 72, 99 (1980).
W. H. Miller, in Potential Energy Surfaces and Dynamics Calculations, edited by D. G. Truhlar, Plenum, New York, 1981, p. 265.
C. J. Cerjan, S.-h. Shi, and W. H. Miller, J. Phys. Chem. 86, 2244 (1982).
W. H. Miller, J. Phys. Chem. 87, 3811 (1983).
For early work on reaction paths and reaction coordinates, see S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes, McGraw-Hill, New York, 1941.
R. A. Marcus, J. Chem. Phys. 45, 4493, (1966);
R. A. Marcus, J. Chem. Phys. 45, 4500 (1966);
R. A. Marcus, J. Chem. Phys. 49, 2610 (1968).
G. L. Hofacker, Z. Naturforsch. Teil A 18, 607 (1963);
G. L. Hofacker, Z. Naturforsch. J. Chem. Phys. 43, 208 (1965).
S. F. Fischer, G. L. Hofacker, and R. Seiler, J. Chem. Phys. 51, 3941 (1969).
Some of the recent papers by other workers on reaction path models are S. F. Fischer and M. A. Ratner, J. Chem. Phys. 57, 2769 (1972).
P. Russegger and J. Brickman, J. Chem. Phys. 62, 1086 (1975)
P. Russegger and J. Brickman J. Chem. Phys. 60, 1 (1977).
M. V. Basilevsky, Chem. Phys. 24, 81 (1977)
M. V. Basilevsky, Chem. Phys. 67, 337 (1982)
M. V. Basilevsky and A. G. Shamov, Chem. Phys. 60, 349 (1981).
K. Fukui, S. Kato, and H. Fujimoto, J. Am. Chem. Soc. 97, 1 (1975)
K. Yamashita, T. Yamabe, and K. Fukui, Chem. Phys. Lett. 84, 123 (1981)
A. K. Fukui, Acc. Chem. Res. 14, 363 (1981).
K. Ishida, K. Morokuma, and A. Komornicki, J. Chem. Phys. 66, 2153 (1977).
A. Nauts and X. Chapuisat, Chem. Phys. Lett. 85, 212 (1982)
X. Chapuisat, A. Nauts, and G. Durrand, Chem. Phys. 56, 91 (1981).
J. Pancir, Collect. Czech. Commun. 40, 1112 (1975)
J. Pancir, Collect. Czech. Commun. 42, 16 (1977).
G. A. Natanson, Mol. Phys. 46, 481 (1982).
B. A. Ruf and W. H. Miller, J. Chem. Soc Faraday Trans. 2 84, 1523 (1988).
W. H. Miller, B. A. Ruf, and Y. T. Chang, J. Chem. Phys. 89, 6298 (1988).
S. K. Gray, W. H. Miller, Y. Yamaguchi, and H. F. Schaefer, J. Chem. Phys. 73, 2733 (1980).
S. K. Gray, W. H. Miller, Y. Yamaguchi, and H. F. Schaefer, J. Am. Chem. Soc. 103, 1900 (1981).
Y. Osamura, H. F. Schaefer, S. K. Gray, and W. H. Miller, J. Am. Chem. Soc. 103, 1904 (1981).
B. A. Waite, S. K. Gray, and W. H. Miller, J. Chem. Phys. 78, 259 (1983).
See also, R. T. Skodje, D. G. Truhlar, and B. C. Garrett, J. Phys. Chem, 85, 3019 (1981).
R. T. Skodje, D. G. Truhlar, and B. C. Garrett, J. Chem. Phys. 77, 5955 (1982).
A. D. Isaacson and D. G. Truhlar, J. Chem. Phys. 76, 1380 (1982).
D. G. Truhlar, N. J. Kilpatrick, and B. C. Garrett, J. Chem. Phys. 78, 2438 (1983).
R. T. Skodje and D. G. Truhlar, J. Chem. Phys. 79, 4882 (1983).
R. T. Skodje, D. W. Schwenke, D. G. Truhlar, and B. C. Garrett, J. Phys. Chem. 88, 628 (1984).
B. C. Garrett and D. G. Truhlar, J. Chem. Phys. 81, 309 (1984).
W. H. Miller, in New Theoretical Concepts for Understanding Organic Reactions, eds. J. Bertran and I. G. Csizmadia, ASI Series, Vol. 267, Reidel, 1989, pp. 347–372.
A. Warshel and R. M. Weiss, J. Am. Chem. Soc. 102, 6218 (1980)
A. Warshel, Biochemistry 20, 3167 (1981).
N. L. Allinger, J. Am. Chem. Soc. 99, 8127 (1977).
For reviews, see R. N. Porter and L. M. Raff, in Dynamics of Molecular Collisions, B, ed. W. H. Miller, Plenum, NY, 1976, p. 1.
L. M. Raff and D. L. Thompson, in Theory of Chemical Reaction Dynamics, Vol III, ed. M. Baer, CRC Press, Boca Raton, FL, 1985, p. 1.
R. A. Marcus, Ber. Bunsenges. Phys. Chem. 81, 190 (1977).
W. L. Hase and D. G. Buckowski, J. Comput. Chem. 3, 335 (1982).
G. C. Schatz, J. Chem. Phys. 79, 5386 (1983).
See, for example, J. M. Bowman, G. C. Schatz, and A. Kuppermann, Chem. Phys. Lett., 24, 378 (1974).
D.-H. Lu and W. L. Hase, J. Chem. Phys. 89, 6723 (1988).
D.-H. Lu and W. L. Hase, J. Chem. Phys., submitted.
W. H. Miller, W. L. Hase, and C. L. Darling, A Simple Model for Correcting the Zero Point Energy Problem in Classical Trajectory Simulations of Polyatomic Molecules, J. Chem. Phys. 91, 0000 (1989), in press.
See also, J. M. Bowman, B. Gazdy, and Q. Sun, J. Chem. Phys. 91, 000 (1989), in press.
W. H. Miller, Adv. Chem. Phys. 25, 69 (1974).
W. H. Miller, Adv. Chem. Phys. 30, 74 (1975).
W. H. Miller, Science 233, 171 (1986).
W. H. Miller, J. Chem. Phys. 62, 1899 (1975).
S. Coleman, in The Whys of Subnuclear Physics, edited by A. Zichichi, Plenum, N.Y., 1979, pp. 805–916.
A. O. Caldiera and A. J. Leggett, Ann. Phys. 149, 374 (1983).
See, for example, D. G. Truhlar and B. C. Garrett, Ann. Rev. Phys. Chem. 35, 159 (1984).
G. C. Lynch, D. G. Truhlar, and B. C. Garrett, J. Chem. Phys. 90, 3102 (1989).
R. A. Marcus and M. E. Coltrin, J. Chem. Phys. 67, 2609 (1977).
C. J. Cerjan, S.-H. Shi, and W. H. Miller, J. Phys. Chem. 86, 2244 (1982).
N. Makri and W. H. Miller, “A Semiclassical Tunneling Model for Use in Classical Trajectory Simulations”, J. Chem. Phys. 91, 0000 (1989), in press.
J. C. Tully and R. K. Preston, J. Chem. Phys. 55, 562 (1971).
B. A. Waite and W. H. Miller, J. Chem. Phys. 76, 2412 (1982).
E. J. Heller and R. C. Brown, J. Chem. Phys. 79, 3336 (1983).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1991 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
Miller, W.H., Chang, YT., Makri, N. (1991). Some New Theoretical Methods for Treating Reaction Dynamics in Polyatomic Molecular Systems. In: Ögretir, C., Csizmadia, I.G. (eds) Computational Advances in Organic Chemistry: Molecular Structure and Reactivity. NATO ASI Series, vol 330. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3262-6_6
Download citation
DOI: https://doi.org/10.1007/978-94-011-3262-6_6
Publisher Name: Springer, Dordrecht
Print ISBN: 978-94-010-5439-3
Online ISBN: 978-94-011-3262-6
eBook Packages: Springer Book Archive