Skip to main content

Some New Theoretical Methods for Treating Reaction Dynamics in Polyatomic Molecular Systems

  • Chapter

Part of the NATO ASI Series book series (ASIC,volume 330)

Abstract

Many useful descriptions of dynamical processes in polyatomic molecular systems are based on a reaction path approach. I.e., the potential energy surface is approximated as a multidimensional harmonic valley about a (curved) line in the 3N-6 dimensional space of the N atom system along which the motion is thought to be most localized. These lectures briefly review this reaction path methodology, but then focus mainly on some more recent approaches that go beyond the reaction path point of view. In particular, it is shown how empirical potential functions can be combined with selected ab initio calculations within an empirical valence bond model in order to construct a globalpotential energy surface for polyatomic reactions. Two other topics that are discussed are a new way of handling zero point energy in a classical trajectory simulation of polyatomic dynamics and a new model for including tunneling effects in a trajectory simulation.

Keywords

  • Potential Energy Surface
  • Reaction Path
  • Vibrational Energy
  • Point Energy
  • Polyatomic Molecule

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, for example, W. J. Hehre, L. Radom, P. v.R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, N.Y., 1986.

    Google Scholar 

  2. H. F. Schaefer, The Electronic Structure of Atoms and Molecules, Addison-Wesley, Reading, MA, 1972.

    Google Scholar 

  3. J. Z. H. Zhang and W. H. Miller, Chem. Phys. Lett. 140, 329 (1987).

    CrossRef  CAS  Google Scholar 

  4. J. Z. H. Zhang and W. H. Miller, J. Chem. Phys. 88, 4549 (1988).

    CrossRef  CAS  Google Scholar 

  5. J. Z. H. Zhang, S. I. Chu, and W. H . Miller,  J, Chem, Phys. 88, 6233 (1988).

    CrossRef  CAS  Google Scholar 

  6. J. Z. H. Zhang and W. H. Miller, Chem. Phys. Lett. 153, 465 (1988).

    CrossRef  CAS  Google Scholar 

  7. J. Z. H. Zhang and W. H. Miller, J. Chem. Phys. 91, 317 (1989).

    Google Scholar 

  8. K. Haug, D. W. Schwenke, Y. Shima, D. G. Truhlar, J. Z. H. Zhang, and D. J. Kouri, J. Phys. Chem. 90, 6757 (1986).

    CrossRef  CAS  Google Scholar 

  9. D. W. Schwenke, K. Haug, D. G. Truhlar, Y. Sun, J. Z. H. Zhang, and D. J. Kouri, J. Phys. Chem. 91, 6080 (1987).

    CrossRef  CAS  Google Scholar 

  10. For a review, see G. C. Schatz, Ann. Rev. Phys. Chem. 39, 317 (1988).

    CrossRef  CAS  Google Scholar 

  11. W. H. Miller, N. C. Handy, and J. E. Adams, J. Chem. Phys. 72, 99 (1980).

    CrossRef  CAS  Google Scholar 

  12. W. H. Miller, in Potential Energy Surfaces and Dynamics Calculations, edited by D. G. Truhlar, Plenum, New York, 1981, p. 265.

    Google Scholar 

  13. C. J. Cerjan, S.-h. Shi, and W. H. Miller, J. Phys. Chem. 86, 2244 (1982).

    CrossRef  CAS  Google Scholar 

  14. W. H. Miller, J. Phys. Chem. 87, 3811 (1983).

    CrossRef  CAS  Google Scholar 

  15. For early work on reaction paths and reaction coordinates, see S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes, McGraw-Hill, New York, 1941.

    Google Scholar 

  16. R. A. Marcus, J. Chem. Phys. 45, 4493, (1966);

    CrossRef  CAS  Google Scholar 

  17. R. A. Marcus, J. Chem. Phys. 45, 4500 (1966);

    CrossRef  CAS  Google Scholar 

  18. R. A. Marcus, J. Chem. Phys. 49, 2610 (1968).

    CrossRef  CAS  Google Scholar 

  19. G. L. Hofacker, Z. Naturforsch. Teil A 18, 607 (1963);

    Google Scholar 

  20. G. L. Hofacker, Z. Naturforsch. J. Chem. Phys. 43, 208 (1965).

    CrossRef  Google Scholar 

  21. S. F. Fischer, G. L. Hofacker, and R. Seiler, J. Chem. Phys. 51, 3941 (1969).

    Google Scholar 

  22. Some of the recent papers by other workers on reaction path models are  S. F. Fischer and M. A. Ratner, J. Chem. Phys. 57, 2769 (1972).

    CrossRef  CAS  Google Scholar 

  23. P. Russegger and J. Brickman, J. Chem. Phys. 62, 1086 (1975)

    CrossRef  CAS  Google Scholar 

  24. P. Russegger and J. Brickman J. Chem. Phys. 60, 1 (1977).

    CrossRef  Google Scholar 

  25. M. V. Basilevsky, Chem. Phys. 24, 81 (1977)

    CrossRef  Google Scholar 

  26. M. V. Basilevsky, Chem. Phys. 67, 337 (1982)

    CrossRef  Google Scholar 

  27. M. V. Basilevsky and A. G. Shamov, Chem. Phys. 60, 349 (1981).

    CrossRef  Google Scholar 

  28. K. Fukui, S. Kato, and H. Fujimoto, J. Am. Chem. Soc. 97, 1 (1975)

    CrossRef  CAS  Google Scholar 

  29. K. Yamashita, T. Yamabe, and K. Fukui, Chem. Phys. Lett. 84, 123 (1981)

    CrossRef  CAS  Google Scholar 

  30. A. K. Fukui, Acc. Chem. Res. 14, 363 (1981).

    CrossRef  CAS  Google Scholar 

  31. K. Ishida, K. Morokuma, and A. Komornicki, J. Chem. Phys. 66, 2153 (1977).

    CrossRef  CAS  Google Scholar 

  32. A. Nauts and X. Chapuisat, Chem. Phys. Lett. 85, 212 (1982)

    CrossRef  CAS  Google Scholar 

  33. X. Chapuisat, A. Nauts, and G. Durrand, Chem. Phys. 56, 91 (1981).

    CrossRef  CAS  Google Scholar 

  34. J. Pancir, Collect. Czech. Commun. 40, 1112 (1975)

    CrossRef  CAS  Google Scholar 

  35. J. Pancir, Collect. Czech. Commun. 42, 16 (1977).

    CrossRef  CAS  Google Scholar 

  36. G. A. Natanson, Mol. Phys. 46, 481 (1982).

    CrossRef  CAS  Google Scholar 

  37. B. A. Ruf and W. H. Miller, J. Chem. Soc Faraday Trans. 2 84, 1523 (1988).

    CAS  Google Scholar 

  38. W. H. Miller, B. A. Ruf, and Y. T. Chang, J. Chem. Phys. 89, 6298 (1988).

    CrossRef  CAS  Google Scholar 

  39. S. K. Gray, W. H. Miller, Y. Yamaguchi, and H. F. Schaefer, J. Chem. Phys. 73, 2733 (1980).

    CrossRef  CAS  Google Scholar 

  40. S. K. Gray, W. H. Miller, Y. Yamaguchi, and H. F. Schaefer, J. Am. Chem. Soc. 103, 1900 (1981).

    CrossRef  CAS  Google Scholar 

  41. Y. Osamura, H. F. Schaefer, S. K. Gray, and W. H. Miller, J. Am. Chem. Soc. 103, 1904 (1981).

    CrossRef  CAS  Google Scholar 

  42. B. A. Waite, S. K. Gray, and W. H. Miller, J. Chem. Phys. 78, 259 (1983).

    CrossRef  CAS  Google Scholar 

  43. See also, R. T. Skodje, D. G. Truhlar, and B. C. Garrett, J. Phys. Chem, 85, 3019 (1981).

    CrossRef  CAS  Google Scholar 

  44. R. T. Skodje, D. G. Truhlar, and B. C. Garrett, J. Chem. Phys. 77, 5955 (1982).

    CrossRef  CAS  Google Scholar 

  45. A. D. Isaacson and D. G. Truhlar, J. Chem. Phys. 76, 1380 (1982).

    CrossRef  CAS  Google Scholar 

  46. D. G. Truhlar, N. J. Kilpatrick, and B. C. Garrett, J. Chem. Phys. 78, 2438 (1983).

    CrossRef  CAS  Google Scholar 

  47. R. T. Skodje and D. G. Truhlar, J. Chem. Phys. 79, 4882 (1983).

    CrossRef  CAS  Google Scholar 

  48. R. T. Skodje, D. W. Schwenke, D. G. Truhlar, and B. C. Garrett, J. Phys. Chem. 88, 628 (1984).

    CrossRef  CAS  Google Scholar 

  49. B. C. Garrett and D. G. Truhlar, J. Chem. Phys. 81, 309 (1984).

    CrossRef  CAS  Google Scholar 

  50. W. H. Miller, in New Theoretical Concepts for Understanding Organic Reactions, eds. J. Bertran and I. G. Csizmadia, ASI Series, Vol. 267, Reidel, 1989, pp. 347–372.

    CrossRef  Google Scholar 

  51. A. Warshel and R. M. Weiss, J. Am. Chem. Soc. 102, 6218 (1980)

    CrossRef  CAS  Google Scholar 

  52. A. Warshel, Biochemistry 20, 3167 (1981).

    CrossRef  CAS  Google Scholar 

  53. N. L. Allinger, J. Am. Chem. Soc. 99, 8127 (1977).

    CrossRef  CAS  Google Scholar 

  54. For reviews, see R. N. Porter and L. M. Raff, in Dynamics of Molecular Collisions, B, ed. W. H. Miller, Plenum, NY, 1976, p. 1.

    Google Scholar 

  55. L. M. Raff and D. L. Thompson, in Theory of Chemical Reaction Dynamics, Vol III, ed. M. Baer, CRC Press, Boca Raton, FL, 1985, p. 1.

    Google Scholar 

  56. R. A. Marcus, Ber. Bunsenges. Phys. Chem. 81, 190 (1977).

    CrossRef  CAS  Google Scholar 

  57. W. L. Hase and D. G. Buckowski, J. Comput. Chem. 3, 335 (1982).

    CrossRef  CAS  Google Scholar 

  58. G. C. Schatz, J. Chem. Phys. 79, 5386 (1983).

    CrossRef  CAS  Google Scholar 

  59. See, for example, J. M. Bowman, G. C. Schatz, and A. Kuppermann, Chem. Phys. Lett., 24, 378 (1974).

    CrossRef  CAS  Google Scholar 

  60. D.-H. Lu and W. L. Hase, J. Chem. Phys. 89, 6723 (1988).

    CrossRef  CAS  Google Scholar 

  61. D.-H. Lu and W. L. Hase, J. Chem. Phys., submitted.

    Google Scholar 

  62. W. H. Miller, W. L. Hase, and C. L. Darling, A Simple Model for Correcting the Zero Point Energy Problem in Classical Trajectory Simulations of Polyatomic Molecules, J. Chem. Phys. 91, 0000 (1989), in press.

    Google Scholar 

  63. See also, J. M. Bowman, B. Gazdy, and Q. Sun, J. Chem. Phys. 91, 000 (1989), in press.

    CrossRef  CAS  Google Scholar 

  64. W. H. Miller, Adv. Chem. Phys. 25, 69 (1974).

    CrossRef  Google Scholar 

  65. W. H. Miller, Adv. Chem. Phys. 30, 74 (1975).

    Google Scholar 

  66. W. H. Miller, Science 233, 171 (1986).

    CrossRef  CAS  Google Scholar 

  67. W. H. Miller, J. Chem. Phys. 62, 1899 (1975).

    CrossRef  CAS  Google Scholar 

  68. S. Coleman, in The Whys of Subnuclear Physics, edited by A. Zichichi, Plenum, N.Y., 1979, pp. 805–916.

    Google Scholar 

  69. A. O. Caldiera and A. J. Leggett, Ann. Phys. 149, 374 (1983).

    CrossRef  Google Scholar 

  70. See, for example, D. G. Truhlar and B. C. Garrett, Ann. Rev. Phys. Chem. 35, 159 (1984).

    CrossRef  CAS  Google Scholar 

  71. G. C. Lynch, D. G. Truhlar, and B. C. Garrett, J. Chem. Phys. 90, 3102 (1989).

    CrossRef  CAS  Google Scholar 

  72. R. A. Marcus and M. E. Coltrin, J. Chem. Phys. 67, 2609 (1977).

    CrossRef  CAS  Google Scholar 

  73. C. J. Cerjan, S.-H. Shi, and W. H. Miller, J. Phys. Chem. 86, 2244 (1982).

    CrossRef  CAS  Google Scholar 

  74. N. Makri and W. H. Miller, “A Semiclassical Tunneling Model for Use in Classical Trajectory Simulations”, J. Chem. Phys. 91, 0000 (1989), in press.

    CrossRef  CAS  Google Scholar 

  75. J. C. Tully and R. K. Preston, J. Chem. Phys. 55, 562 (1971).

    CrossRef  CAS  Google Scholar 

  76. B. A. Waite and W. H. Miller, J. Chem. Phys. 76, 2412 (1982).

    CrossRef  CAS  Google Scholar 

  77. E. J. Heller and R. C. Brown, J. Chem. Phys. 79, 3336 (1983).

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Miller, W.H., Chang, YT., Makri, N. (1991). Some New Theoretical Methods for Treating Reaction Dynamics in Polyatomic Molecular Systems. In: Ögretir, C., Csizmadia, I.G. (eds) Computational Advances in Organic Chemistry: Molecular Structure and Reactivity. NATO ASI Series, vol 330. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3262-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3262-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5439-3

  • Online ISBN: 978-94-011-3262-6

  • eBook Packages: Springer Book Archive