Skip to main content

Porous Surface Boiling and Its Application to Cooling of Microelectronic Chips

  • Chapter
Convective Heat and Mass Transfer in Porous Media

Part of the book series: NATO ASI Series ((NSSE,volume 196))

Abstract

In the first part of this paper the science and art of enhancement of nucleate boiling heat transfer by means of porous surface structures are reviewed. This is followed in the second part by the discussion on cooling high-powered microelectronic chips by dielectric fluid. It is pointed out that the application of porous surface boiling to cooling chips presents a new class of problems for heat transfer research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thome, John R.(1990) Enhanced Boiling Heat Transfer, Taylor and Francis/ Hemisphere.

    Google Scholar 

  2. Danielson, R. D., Tousignant, L., and Bar-Cohen, A.(1987) ‘Saturated Pool Boiling Characteristics of Commercially Available Perfluorinated Inert Liquids’, in Proc. 1987 ASME/ISME Thermal Engineering Joint Conference, Vol.3, pp.419–430.

    Google Scholar 

  3. JSME Databook: Heat Transfer, 4th Edition (1986), K. Katayama (ed.), Japan Society of Mechanical Engineers.

    Google Scholar 

  4. O’Neill, P. S., Gottzmann, C. F., and Terbot, J. F.(1972) ‘Novel Heat Exchanger Increases Cascade Cycle Efficiency for Natural Gas Liquefaction’, Advances in Cryogenic Engineering 17, 420–437.

    Google Scholar 

  5. Bergles, A. E. and Chyu, M. C.(1982) ‘Characteristics of Nucleate Boiling From Porous Metallic Coatings’, ASME Journal of Heat Transfer 104, 279–285.

    Article  Google Scholar 

  6. Nakayama, W., Daikoku, T., Kuwahara, H., and Nakajima, T.(1980) ‘Dynamic Model of Enhanced Boiling Heat Transfer on Porous Surfaces, Part I: Experimental Investigation’, ASME Journal of Heat Transfer 102, 445–450.

    Article  Google Scholar 

  7. Nakayama, W., Daikoku, T., Kuwahara, H., and Nakajima, T.(1980) ‘Dynamic Model of Enhanced Boiling Heat Transfer on Porous Surfaces, Part II; Analytical

    Google Scholar 

  8. Nakayama, W., Daikoku, T., Kuwahara, H., and Nakajima, T.(1980) ‘Dynamic Model of Enhanced Boiling Heat Transfer on Porous Surfaces, Part II; Analytical Modeling’, ASME Journal of Heat Transfer 102, 451–456.

    Article  Google Scholar 

  9. Tanno, Y. and Ooizumi, K.(1987) ‘High-Performance Heat Transfer Tube’, Tube International, March, 51–55.

    Google Scholar 

  10. Saier, M., Kastner, H. W., and Klochkler, R.(1979) ‘Y and T-Finned Tubes and Methods and Apparatus for their Making’, U.S. Patent 4, 179, 911.

    Google Scholar 

  11. Fujikake, J.(1980) ‘Heat Transfer Tube for Use in Boiling Type heat exchangers and Method of Producing the Same’, U.S. Patent 4, 211, 826.

    Google Scholar 

  12. Yilmaz, S., Hwalek, J. J., and Westwater, J. W.(1980) ‘Pool Boiling Heat Transfer Performance for Commercial Enhanced Tube Surfaces’, ASME Paper N0.80-HT-41

    Google Scholar 

  13. Powers, A. E. (1961) ‘Conductivity in Aggregates’, AEC Research and Development Report KAPL-2145.

    Google Scholar 

  14. Bruggeman, D. A. G.(1935) ‘Dielectric Constant and Conductivity of Mixtures of Isotropic Materials’, Annalen Physik 24, 636–679.

    Article  ADS  Google Scholar 

  15. Macbeth, R. V.(1971) ‘Boiling on Surfaces Overlayed with a Porous Deposit: Heat Transfer Rates Obtainable by Capillary Action’, United Kingdom Atomic Energy Authority, AEEW-R.711.

    Google Scholar 

  16. Nakayama, W., Daikoku, T., and Nakajima, T.,(1980) ‘Modeling of Liquid Suction Mechanism in Porous Surface Boiling’, ASME Paper No.80-HT-122.

    Google Scholar 

  17. Nakayama, W., Daikoku, T., and Nakajima, T.(1982) ‘Effects of Pore Diameters and System Pressure on Saturated Nucleate Boiling Heat Transfer from Porous Surfaces’, ASME Journal of Heat Transfer 104, 286–291.

    Article  Google Scholar 

  18. Ayub, Z. H. and Bergles, A. E.(1985) ‘Pool Boiling From Gewa-T Surfaces in Water and R-113’, in Augmentation of Heat Transfer in Energy Systems, ASME HTD-Vol.52, pp.57–73.

    Google Scholar 

  19. Chu, R. C. and Simon, R. E.(1988) ‘Evolution of Cooling Technology in Medium and Large Scale Computers-An IBM Approach’, 20th International Symposium “Heat Transfer in Electronic and Microelectronic Equipment”, Int. Centre for Heat and Mass Transfer, Aug. 29-Sept. 2, 1988.

    Google Scholar 

  20. Watari, T. and Murano, H.(1985) ‘Packaging Technology for NEC SX Supercomputer’, in Proc. 1985 IEEE Electronic Component Conference, pp. 192–198.

    Google Scholar 

  21. Nikkei Electronics(1985) ‘Water-Cooled Single-Board CPU; Hardware Technology for Large-Scale Computer M-780’, pp.59–62.

    Google Scholar 

  22. Danielson, R. D., Krajewski, N., and Brost, J.(1986) ‘Cooling a Superfast Computer’, Electronic Packaging & Production, July 1986, pp.44–45.

    Google Scholar 

  23. Nakayama, W., Nakajima, T., Ohashi, S., and Kuwahara, H. (1989) ‘Modeling of Temperature Transient of Microporous Studs in Boiling Dielectric Fluid After Stepwise Power Application’, in Heat Transfer in Electronics-1989, ASME HTD-Vol. 111, pp. 17–23.

    Google Scholar 

  24. Lienhard, J. H. (1982) ‘Corresponding States of the Spinodal and Homogeneous Nucleation Limits’, ASME Journal of Heat Transfer 104, 379–381.

    Article  Google Scholar 

  25. Bar-Cohen, A. and Simon, T. W. (1988) ‘Wall Superheat Excursion in the Boiling Incipience of Dielectric Fluids’, Heat Transfer Engineering 9-3, 19–31.

    Google Scholar 

  26. Marto, P.J. and Lepere, V.J. (1982) ‘Pool Boiling Heat Transfer from Enhanced Surfaces to Dielectric Fluids’, ASME Journal of Heat Transfer 104, 292–299.

    Article  Google Scholar 

  27. Nakayama, W., Nakajima, T., and Hirasawa, S. (1989) ‘Heat Sink Studs Having Enhanced Boiling Surfaces for Cooling Microelectronic Components’ ASME Paper No.84-WA/HT-89.

    Google Scholar 

  28. Park, K.-A., Bergles, A.E., and Danielson, R.D.(1988) ‘Boiling Heat Transfer Characteristics With Fluorinert Liquids’, in Heat Transfer in Electronic and Microelectronic Equipment, ICHMT, Aug. 29-Sept. 3, 1988, Dubrovnik, Yugoslavia.

    Google Scholar 

  29. Anderson, T. M. and Mudawwar, I (1988) ‘Microelectronic Cooling by Enhanced Pool Boiling of a Dielectric Fluorocarbon liquid’ in Proc. 1988 National Heat Transfer Conf, ASME HTD-Vol.96, pp.551–560.

    Google Scholar 

  30. Oktay, S. (1982) ‘Departure from Natural Convection (DNC) in Low-Temperature Boiling Heat Transfer Encountered in Cooling Microelectronic Devices’, in U. Grigull, E. Hahne and K. Stephen (eds.), Heat Transfer-1982, Hemisphere, Vol.4, pp.113–118.

    Google Scholar 

  31. Nakayama, W. (1989) ‘Thermal Management of Electronic Equipment: A Way to the Development of New Heat Transfer Engineering’, in G.-J. Hwang (ed.), Transport Phenomena in Thermal Control, Hemisphere, pp.51–70.

    Google Scholar 

  32. Reeber, M. D. and Frieser, R.G. (1980) ‘Heat Transfer of Modified Silicon Surfaces’, IEEE Trans. Components, Hybrids, and Manufacturing Technology CHMT-3, 387–391.

    Article  Google Scholar 

  33. Ma, C.-F. and Bergles, A.E. (1986) ‘Jet Impingement Nucleate Boiling’, Int. J. Heat Mass Transfer 29. 1095–1101.

    Article  Google Scholar 

  34. Wadsworth, D.C. and Mudawar, I. (1989) ‘Cooling of a Multichip Electronic Module by Means of Confined Two-Dimensional Jets of Dielectric Liquid’, in Heat Transfer in Electronics-1989, ASME HTD-Vol. 111, pp.79–87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nakayama, W. (1991). Porous Surface Boiling and Its Application to Cooling of Microelectronic Chips. In: Kakaç, S., Kilkiş, B., Kulacki, F.A., Arinç, F. (eds) Convective Heat and Mass Transfer in Porous Media. NATO ASI Series, vol 196. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3220-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3220-6_36

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5419-5

  • Online ISBN: 978-94-011-3220-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics