Skip to main content

Static and dynamic analysis of local control of coronary flow

  • Chapter
Coronary Blood Flow

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 124))

  • 142 Accesses

Abstract

Coronary flow is controlled by the myocardium at the tissue level. This local control can be characterized by two manifestations: the adaptation of blood flow to the level of oxygen consumption and the relative independence of blood flow from coronary arterial pressure. The former manifestation is referred to as flow adaptation to metabolism, the latter one as autoregulation. Alternative terms for flow adaptation to metabolism found in the literature are metabolic regulation and functional hyperemia. However, autoregulation may also be mediated by metabolic processes and therefore metabolic regulation is an ambiguous term. Hyperemia means ‘increased blood flow’ and consequently hyperemia implies the definition of a standard control value of flow. The term flow adaptation to metabolism, or simply flow adaptation, expresses the ability of the coronary system to adapt flow to metabolic needs of the heart, and is the term further used here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bache RJ, Dai XZ, Simon AB, Schwartz JS, Homans DC (1987) Effect of adenosine deaminase on coronary vasodilation during exercise. Circulation 76 Suppl IV: 146.

    Google Scholar 

  2. Bardenheuer H, Schrader J (1986) Supply-to-demand ratio for oxygen determines formation of adenosine by the heart. Am. J. Physiol. 250 (Heart Circ. Physiol. 19): H173–H180.

    PubMed  CAS  Google Scholar 

  3. Belloni FL, Sparks HV (1977) Dynamics of myocardial oxygen consumption and coronary vascular resistance. Am. J. Physiol. 233 (Heart Circ. Physiol. 2): H34–H43.

    PubMed  CAS  Google Scholar 

  4. Berne RM (1963) Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am. J. Physiol. 204: 317–322.

    PubMed  CAS  Google Scholar 

  5. Broten TP, Romson JL, Fullerton DA, VanWinkle DM, Feigl EO (1989) Oxygen carbon dioxide control of coronary blood flow. FASEB J. 3: A973.

    Google Scholar 

  6. Broten TP, Feigl EO (1990) Role of oxygen and carbon dioxide in coronary autoregulation. FASEB J. 4: A403.

    Google Scholar 

  7. Chilian WM, Layne SM, Klausner EC, Eastham CL, Marcus ML (1989) Redistribution of coronary microvascular resistance produced by dipyridamole. Am. J. Physiol. 256 (Heart Circ. Physiol. 25): H383–H390.

    PubMed  CAS  Google Scholar 

  8. Dankelman J, Spaan JAE, Stassen HG, Vergroesen I (1989) Dynamics of coronary adjustment to a change in heart rate in the anaesthetized goat. J. Physiol. Lond. 408: 295–312.

    PubMed  CAS  Google Scholar 

  9. Dankelman J, Stassen HG, Spaan JAE (1990) System analysis of the dynamic response of the coronary circulation to a sudden change in heart rate. Med. Biol. Eng. Comp. 28: 139–148.

    Article  CAS  Google Scholar 

  10. Dankelman J, Spaan JAE, VanderPloeg CPB, Vergroesen I (1989) Dynamic response of the coronary circulation to a rapid change in its perfusion in the anaesthetized goat. J. Physiol. Lond. 419: 703–715.

    PubMed  CAS  Google Scholar 

  11. Dole WP, Yamada N, Bishop VS, Olsson RA (1985) Role of adenosine in coronary blood flow regulation after reductions in perfusion pressure. Circ. Res. 56: 517–524.

    Article  PubMed  CAS  Google Scholar 

  12. Drake-Holland AJ, Laird JD, Noble MIM, Spaan JAE, Vergroesen I (1984) Oxygen and coronary vascular resistance during autoregulation and metabolic vasodilation in the dog. J. Physiol. Lond. 348: 285–299.

    PubMed  CAS  Google Scholar 

  13. Duling BR (1972) Microvascular responses to alterations in oxygen tension. Circ. Res. 31: 481–489.

    Article  PubMed  CAS  Google Scholar 

  14. Edlund A, Fredholm BB, Patrignani P, Patrono C, Wennmalm A, Wennmalm M (1983) Release of two vasodilators, adenosine and prostacyclin, from isolated rabbit hearts during controlled hypoxia. J. Physiol Lond. 340: 487–502.

    PubMed  CAS  Google Scholar 

  15. Eikens E, Wilcken DEL (1974) Reactive hyperemia in the dog heart: Effects of temporarily restricting arterial inflow and of coronary occlusions lasting one and two cardiac cycles. Circ. Res. 35: 702–712.

    Article  PubMed  CAS  Google Scholar 

  16. Faber JE, Meininger GA (1990) Selective interaction of α-adrenoceptors with myogenic regulation of microvascular smooth muscle. Am. J. Physiol. 259 (Heart Circ. Physiol. 28: H1126–H1133

    PubMed  CAS  Google Scholar 

  17. Ganz W, Tamura K, Marcus HS, Donoso R, Yoshida S, Swan HJC (1971) Measurement of coronary sinus blood flow by continuous thermodilution in man. Circulation 44: 181–195.

    Article  PubMed  CAS  Google Scholar 

  18. Gellai M, Norton JM, Detar R (1973) Evidence for direct control of coronary vascular tone by oxygen. Circ. Res. 32: 279–289.

    Article  PubMed  CAS  Google Scholar 

  19. Gerlach E, Dreisbach RH (1963) Der nucleotid-Abbau im Herzmuskel bei Sauerstoffmangel und seine mögliche Bedeutung fur die Coronardurch-blutung. Naturwiss 50: 228–229.

    Article  CAS  Google Scholar 

  20. Gibbs CL, Papadoyannis DE, Drake AJ, Noble MIM (1980) Oxygen consumption of the non-working and potassium chloride-arrested dog heart. Circ. Res. 47: 408–417.

    Article  PubMed  CAS  Google Scholar 

  21. Gorczynski RJ, Duling BR (1978) Role of oxygen in arteriolar functional vasodilation in hamster striated muscle. Am. J. Phsyiol. 235 (Heart Circ. Physiol. 4): H505–H515.

    CAS  Google Scholar 

  22. Grande PO, Lundvall J, Mellander S (1977) Evidence for a rate-sensitive regulatory mechanism in myogenic microvascular control. Acta Physiol. Scand. 99: 432–447.

    Article  PubMed  CAS  Google Scholar 

  23. Grande PO, Mellander S (1978) Characteristics of static and dynamic regulatory mechanisms in myogenic microvascular control. Acta Physiol. Scand. 102: 231–245.

    Article  PubMed  CAS  Google Scholar 

  24. Grande PO, Borgstrom P, Mellander S (1979) On the nature of basal vascular tone in cat skeletal muscle and its dependence on transmural pressure stimuli. Acta Physiol. Scand. 107: 365–376.

    Article  PubMed  CAS  Google Scholar 

  25. Granger HJ, Hester RK, Haensly WA (1982) Biochemistry and metabolism of coronary vessels. In: The Coronary Artery. Ed. Kalsner S. Oxford University press, New York: 168–186.

    Google Scholar 

  26. Granger HJ, Shepherd AP Jr (1973) Intrinsic microvascular control of tissue oxygen delivery. Microvasc. Res. 5: 49–72.

    Article  PubMed  CAS  Google Scholar 

  27. Gregg DE (1963) Effect of coronary perfusion pressure or coronary flow on oxygen usage of the myocardium. Circ. Res. 13: 497–500.

    Article  PubMed  CAS  Google Scholar 

  28. Hanley FL, Grattan MT, Stevens MB, Hoffman JIE (1986) Role of adenosine in coronary autoregulation. Am. J. Physiol. 250 (Heart Circ. Physiol. 19): H558–H566.

    PubMed  CAS  Google Scholar 

  29. Kitamura K, Jorgensen CR, Gobel FL, Taylor HL, Wang Y (1972) Hemodynamic correlates of myocardial oxygen consumption during upright exercise. J. Appl. Physiol. 32: 516–522.

    PubMed  CAS  Google Scholar 

  30. Koch AR (1964) Some mathematical forms of autoregulatory models. Circ. Res. 15 Suppl. I: 269–278.

    PubMed  Google Scholar 

  31. Kroll K, Schipperheyn JJ, Hendriks FFA, Laird JD (1980) Role of adenosine in postocclusion coronary vasodilation. Am. J. Physiol. 238 (Heart Circ. Physiol. 7): H214–H219.

    PubMed  CAS  Google Scholar 

  32. Kroll K, Feigl EO (1985) Adenosine is unimportant in controlling coronary blood flow in unstressed dog hearts. Am. J. Physiol. 249 (Heart Circ. Physiol. 18): H1176–H1187.

    PubMed  CAS  Google Scholar 

  33. Kuo LD, Davis MJ, Chilian WM (1990) Endothelium-dependent, flow-induced dilation of isolated coronary arterioles. Am. J. Physiol. 259 (Heart Circ. Physiol. 28): H1063–H1070.

    PubMed  CAS  Google Scholar 

  34. Kuo L, Chilian WM, Davis MJ (1990) Coronary arteriolar myogenic response is independent of endothelium. Circulation 66: 860–866.

    Article  CAS  Google Scholar 

  35. Laird JD, Breuls PNWM, VanDerMeer P, Spaan JAE (1981) Can a single vasodilator be responsible for both coronary autoregulation and metabolic vasodilation. Basic Res. Cardiol. 76: 354–358.

    Article  PubMed  CAS  Google Scholar 

  36. Lansman JB (1988) Endothelial mechanosensors. Going with the flow. Nature 331: 481–482.

    Article  PubMed  CAS  Google Scholar 

  37. McHale PA, Dubé GP, Greenfield JC Jr (1987) Evidence for myogenic vasomotor activity in the coronary circulation. Prog. Cardiovasc. Dis. 30: 139–146.

    Article  PubMed  CAS  Google Scholar 

  38. McGillivray-Anderson KM, Faber JE (1990) Effect of acidosis on contraction of microvascular smooth muscle by α1 and α2-adrenoceptors. Implications for neural and metabolic regulation. Circ. Res. 66: 1643–1657.

    Article  PubMed  CAS  Google Scholar 

  39. Meininger GA, Mack CA, Fehr KL, Bohlen HG (1987) Myogenic Vasoregulation overrides local metabolic control in resting rat skeletal muscle. Circ. Res. 60: 861–870.

    Article  PubMed  CAS  Google Scholar 

  40. Mohrman DE, Feigl EO (1978) Competition between sympathetic vasoconstriction and metabolic vasodilation in the canine coronary circulation. Circ. Res. 42: 79–86.

    Article  PubMed  Google Scholar 

  41. Olsson RA, Saito D, Steinhart CR (1982) Compartmentalization of the adenosine pool of dog and rat hearts. Circ. Res. 50: 617–626.

    Article  PubMed  CAS  Google Scholar 

  42. Olsson RA, Snow JA, Gentry MK (1978) Adenosine metabolism in canine myocardial reactive hyperemia. Circ. Res. 42: 358–362.

    Article  PubMed  CAS  Google Scholar 

  43. Rubio R, Berne RM (1975) Regulation of coronary blood flow. Prog. Cardiovasc. Dis. 18: 105–122.

    Article  PubMed  CAS  Google Scholar 

  44. Sadick N, McHale PA, Dubé GP, Greenfield JC Jr (1987) Demonstration of coronary artery myogenic vasoconstriction in the awake dog. Basic Res. Cardiol. 82: 585–595.

    Article  PubMed  CAS  Google Scholar 

  45. Saito D, Steinhart CR, Nixon DG, Olsson RA(1981) Intracoronary adenosine deaminase reduces canine myocardial reactive hyperemia. Circ. Res. 42: 1262–1267.

    Article  Google Scholar 

  46. Schrader J, Haddy FJ, Gerlach E (1977) Release of adenosine, inosine and hypoxanthine from the isolated guinea pig heart during hypoxia, flow-autoregulation and reactive hyperemia. Pflügers Arch 369: 1–6.

    Article  PubMed  CAS  Google Scholar 

  47. Schwartz GG, McHale PA, Greenfield JC Jr (1982) Hyperemic response of the coronary circulation to brief diastolic occlusion in the conscious dog. Circ. Res. 50: 28–37.

    Article  PubMed  CAS  Google Scholar 

  48. Schwartz GG, McHale PA (1982) Coronary vasodilation after a single ventricular extra-activation in the conscious dog. Circ. Res. 50: 38–46.

    Article  PubMed  CAS  Google Scholar 

  49. Shepherd AP, Burgar CG (1977) A solid state arterio-venous oxygen difference analyzer for following whole blood. Am. J. Physiol. 232 (Heart Circ. Physiol. 1): H437–H440.

    PubMed  CAS  Google Scholar 

  50. Spaan JAE (1985) Coronary diastolic pressure-flow relation and zero flow pressure explained on the basis of intramyocardial compliance. Circ. Res. 56: 293–309.

    Article  PubMed  CAS  Google Scholar 

  51. Sullivan SM, Johnson PC (1981) Effect of oxygen on blood flow autoregulation in cat sartorius muscle. Am. J. Physiol. 241 (Heart Circ. Physiol. 10: H807–H815.

    PubMed  CAS  Google Scholar 

  52. VanBavel E (1989) Metabolic and myogenic control of blood flow studied on isolated small arteries. PhD Thesis. University of Amsterdam, The Netherlands.

    Google Scholar 

  53. VanBeek JHGM, Elzinga G (1986) Response time of mitochondrial O2 consumption to heart rate changes in isolated rabbit heart. Abstract Proc. Int. Union Physiol. Sci. 16: 485.

    Google Scholar 

  54. VanWezel HB, Bovill JG, Koolen JJ, Barendse GAM, Fiolet JWT, Dijkhuis JP (1987) Myocardial metabolism and coronary sinus blood flow during coronary artery surgery: Effects of nitroprusside and nifedipine. Am. Heart J. 113: 266–273.

    Article  CAS  Google Scholar 

  55. Vergroesen I, Dankelman J, Spaan JAE (1990) Static and dynamic control of the coronary circulation. In: Coronary circulation, basic mechanism and clinical relevance. Eds. Kajiya F, Klassen GA, Spaan JAE ,Hoffman JIE. Springer-Verlag Tokyo: 221–232.

    Google Scholar 

  56. Vergroesen I, Noble MIM, Wieringa PA, Spaan JAE (1987) Quantification of O2 consumption and arterial pressure as independent determinants of coronary flow. Am. J. Physiol. 252 (Heart Circ. Physiol. 21): H545–H553.

    PubMed  CAS  Google Scholar 

  57. Vergroesen I, Spaan JAE (1988) Rate of decrease of myocardial O2 consumption due to cardiac arrest in anesthetized goats. Pflügers Arch. 413: 160–166.

    Article  PubMed  CAS  Google Scholar 

  58. VonRestorff W, Holz J, Bassenge E (1977) Exercise induced augmentation of myocardial oxygen extraction in spite of normal coronary dilatory capacity in dogs. Pflügers Arch. 372: 181–185.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dankelman, J., Vergroesen, I., Spaan, J.A.E. (1991). Static and dynamic analysis of local control of coronary flow. In: Coronary Blood Flow. Developments in Cardiovascular Medicine, vol 124. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3148-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3148-3_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5388-4

  • Online ISBN: 978-94-011-3148-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics