Skip to main content

Role of cellular proteinases and their protein inhibitors in inflammation

  • Chapter
Biochemistry of Inflammation

Part of the book series: Immunology and Medicine Series ((IMME,volume 18))

Abstract

If immunological events are the trigger for inflammation, then proteinases provide the resultant explosions. The classic signs of inflammation: dolor, rubor, calor, and turgor are all dependent for their production on the action of proteolytic enzymes. There is no possibility of reviewing all of the proteinases involved in inflammation in a single chapter. There are literally scores of enzymes that would have to be considered. In order to reduce the number of proteases to a manageable size the following have been omitted in their entirety: all blood clotting factors, all complement factors (covered in Chapter 2 of this volume), the clot lysing system including plasmin and plasminogen activators, and all proteases that function intracellularly and do not escape to the exterior during inflammation. This latter group includes most membrane-bound proteases and cytoplasmic enzymes such as the calpains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrett, A. J. and Salvesen, G. (eds) (1986). Proteinase Inhibitors. Research Monographs in Cell and Tissue Physiology, Vol. 12. (Amsterdam: Elsevier)

    Google Scholar 

  2. Barrett, A. J. and McDonald, J. K. (1986). Nomenclature: protease, proteinase and peptidase. Biochem. J., 237, 935

    CAS  PubMed  Google Scholar 

  3. Hartley, B. S. (1970). Proteolytic enzymes. Ann. Rev. Biochem., 29, 45–72

    Article  Google Scholar 

  4. Nomenclature Committee -International Union of Biochemistry (1984). Enzyme Nomenclature (New York: Academic Press)

    Google Scholar 

  5. Nomenclature Committee - International Union of Biochemistry (1989). Enzyme Nomenclature. Supplement 2: Corrections and Additions. Eur. J. Biochem., 179, 489–533

    Article  Google Scholar 

  6. Barrett, A. J. and McDonald, J. K. (1980). Mammalian Proteases: A Glossary and Bibliography, Vol. 1: Endopeptidases (London: Academic Press)

    Google Scholar 

  7. Mayne, R. and Burgeson, R. E. (eds) (1987). Structure and Function of Collagen Types (New York: Academic Press)

    Google Scholar 

  8. Jeffrey, J. J. (1986). The biological regulation of collagenase activity. In Mecham R. P. (ed.), Regulation of Matrix Accumulation, pp. 53–98 (New York: Academic Press)

    Google Scholar 

  9. Tschesche, H., Fedrowitz, J., Honert, U., Michaelis, J. and Macartney, H. W. (1986). Matrix degrading proteinases from human granulocytes: type I, II, III collagenase, gelatinase and type IV, V collagenase. A survey of recent findings and inhibition by y-anticollagenase. Folia Histochem. Cytobiol., 24, 125–31

    CAS  PubMed  Google Scholar 

  10. van der Rest, M. and Mayne, R. (1987). Type IX collagen. In Mayne, R. and Burgeson, R. E. (eds), Structure and Function of Collagen Types, pp. 195–221 (New York: Academic Press)

    Google Scholar 

  11. Weiss, S. J. and Peppin, G. J. (1985). Collagenolytic metalloenzymes of the human neutrophil. Characteristics, regulation and potential function in vivo. Biochem. Pharmacol., 35, 3189–98

    Article  Google Scholar 

  12. Davidson, J. M. (1987). Elastin. Structure and biology. In Uitto, J. and Perejda, A. J. (eds), Connective Tissue Disease. Molecular Pathology of the Extracellular Matrix, pp. 29–54 (New York: Marcel Dekker)

    Google Scholar 

  13. Gosline, J. M. and Rosenbloom, J. (1984). Elastin. In Piez, K. A. and Reddi, A. H. (eds), Extracellular Matrix Biochemistry, pp. 191–227 (New York: Elsevier)

    Google Scholar 

  14. Wight, T. N. and Mecham, R. P. (eds) (1987). Biology of the Proteoglycans (New York: Academic Press)

    Google Scholar 

  15. Heinegárd, D. and Oldberg, A. (1989). Structure and biology of cartilage and bone matrix noncollagenous macromolecules. FASEB J., 3, 2042–51

    PubMed  Google Scholar 

  16. Mosher, D. R. (ed.) (1988). Fibronectin (New York: Academic Press)

    Google Scholar 

  17. Wright, D. G. (1988). Human neutrophil degranulation. Methods Enzymol., 162, 538–51

    Article  CAS  PubMed  Google Scholar 

  18. Rest, R. F. (1988). Human neutrophil and mast cell proteases implicated in inflammation. Methods Enzymol., 163, 309–27

    Article  CAS  PubMed  Google Scholar 

  19. Janoff, A. and Scherer, J. (1968). Mediators of inflammation in leukocyte lysosomes. IX. Elastinolytic activity in granules of human polymorphonuclear leukocytes. J. Exp. Med., 128, 1137–55

    Article  CAS  PubMed  Google Scholar 

  20. Janoff, A. and Blondin, J. (1970). Depletion of cartilage matrix by a neutral protease fraction of human leukocyte lysosomes. Proc. Soc. Exp. Biol. Med., 135, 302–6

    CAS  PubMed  Google Scholar 

  21. Janoff, A. (1970). Mediators of tissue damage in leukocyte lysosomes. X. Further studies on human granulocyte elastase. Lab. Invest., 22, 228–36

    CAS  PubMed  Google Scholar 

  22. Gadek, J. E., Fells, G. A., Wright, D. G. and Crystal, R. G. (1980). Human neutrophil elastase functions as a type III collagen ‘collagenase’. Biochem. Biophys. Res. Commun., 95, 1815–22

    Article  CAS  PubMed  Google Scholar 

  23. Mainardi, C. L., Dixit, S. M. and Kang, A. H. (1980). Degradation of type IV (basement membrane) collagen by a proteinase isolated from human polymorphonuclear leukocyte granules. J. Biol. Chem., 255, 5435–41

    CAS  PubMed  Google Scholar 

  24. Campbell, E. J., Senior, R. M., McDonald, J. A., Cox, D. L., Greco, J. M. and Landis, J. A. (1982). Proteolysis by neutrophils. Relative importance of cell-substrate contact and oxidative inactivation of proteinase inhibitors in vitro. J. Clin. Invest., 70, 845–52

    Article  CAS  PubMed  Google Scholar 

  25. Scott, P. G. and Pearson, H. (1983). Cleavage of the C-terminal cross-linking region of type I collagen by tissue proteinases. Biochem. Soc. Trans., 11, 746–7

    CAS  Google Scholar 

  26. Dewald, B., Rindler-Ludwig, R., Bretz, U. and Baggiolini, M. (1975). Subcellular localization and heterogeneity of neutral proteases in neutrophilic polymorphonuclear leukocytes. J. Exp. Med., 141, 709–23

    Article  CAS  PubMed  Google Scholar 

  27. Damiano, V. V., Kucich, U., Murer, E., Laudenslager, N. and Weinbaum, G. (1988). Ultrastructural quantitation of peroxidase-and elastase-containing granules in human neutrophils. Am. J. Pathol., 131, 235–45

    CAS  PubMed  Google Scholar 

  28. Takahashi, H., Nukiwa, T., Kunihiko, N., Yoshimura, K., Quick, C. D., States, D. J., Holmes, M. D., Whang-Peng, J., Knutsen, T. and Crystal, R. G. (1988). Structure of the human neutrophil elastase gene. J. Biol. Chem., 263, 14739–47

    CAS  PubMed  Google Scholar 

  29. Takahasi, H., Nukiwa, T., Basset, P. and Crystal, R. G. (1988). Myelomonocytic cell lineage expression of the neutrophil elastase gene. J. Biol. Chem., 263, 2543–7

    Google Scholar 

  30. Wei, A.-Z., W. Mayr, I. and Bode, W. (1988). The refined 2.3 Å crystal structure of human leukocyte elastase in a complex with a valine chioromethyl ketone inhibitor. FEBS Lett., 234, 367–73

    Article  CAS  PubMed  Google Scholar 

  31. Nagamatsu, A. and Soeda, S. (1981). Effects of human granulocyte elastase on fibrinolysis. Chem. Pharm. Bull. Tokyo, 29, 1121–9

    Article  CAS  PubMed  Google Scholar 

  32. Johnson, U., Ohlsson, K. and Olsson, I. (1976). Effects of granulocyte neutral proteases on complement components. Scand. J. Immunol., 5, 421–6

    Article  CAS  PubMed  Google Scholar 

  33. Baici, A., Knöpfel, M., Fehr, K., Skvaril, F. and Böni, A. (1980). Kinetics of different susceptibilities of the four human immunoglobulin G subclasses to proteolysis by human lysosomal elastase. Scand. J. Immunol., 12, 41–50

    Article  CAS  PubMed  Google Scholar 

  34. Movat, H. Z., Habal, F. M. and MacMorine, D. R. L. (1976). Generation of a vasoactive peptide by a netural protease of human neutrophil leukocytes. Agents Actions, 6, 183–90

    Article  CAS  PubMed  Google Scholar 

  35. Schmidt, W., Egbring, R. and Havemann, K. (1975). Effect of elastase-like and chymotrypsin-like neutral proteases from human granulocytes on isolated clotting factors. Thromb. Res., 6, 315–26

    Article  CAS  PubMed  Google Scholar 

  36. Karpati, J., Varadi, K. and Elodi, S. (1982). Effect of granulocyte proteases on human coagulation factors IX and X. The protective effect of calcium. Hoppe-Seyler’s Z. Physiol. Chem., 363, 521–6

    Article  CAS  Google Scholar 

  37. Byrne, R. E., Polacek, D., Gordon, J. I. and Scanu, A. M. (1984). The enzyme that cleaves apolipoprotein A-II upon in vitro incubation of human plasma high-density lipoprotein-3 with blood polymorphonuclear cells is an elastase. J. Biol. Chem., 259, 4537–43

    Google Scholar 

  38. Watorek, W. and Travis, J. (1987). The action of neutrophil elastase on intact and oxidized (Met)-enkephalin-Arg6-Gly7-Leu8 peptide. Biochem. Biophys. Res. Commun., 147, 416–21

    Article  CAS  Google Scholar 

  39. Takada, Y., Manita, H., Wagner, B., Fa, X. G., James, H. L. and Erdös, E. G. (1987). Activation of human prorenin by neutrophil elastase. J. Clin. Endocrinol. Metab., 65,1225–30

    Article  CAS  PubMed  Google Scholar 

  40. Kleniewski, J. and Donaldson, V. (1988). Granulocyte elastase cleaves human high molecular weight kininogen and destroys its clot-promoting activity. J. Exp. Med., 167, 1895–907

    Article  CAS  PubMed  Google Scholar 

  41. Ohlsson, K. and Olsson, I. (1977). The extracellular release of granulocyte collagenase and elastase during phagocytosis and inflammatory processes. Scand. J. Haematol., 19, 145–52

    Article  CAS  PubMed  Google Scholar 

  42. Schmidt, W. (1978). Differential release of elastase and chymotrypsin from polymorphonuclear leukocytes. In Havemann, K. and Janoff, A. (eds), Neutral Proteases of Human Polymorphonuclear Leukocytes, pp. 77–81 (Munich: Urban & Schwarzenberg)

    Google Scholar 

  43. Remold-O’Donnell, E., Nixon, J. C. and Rose, R. M. (1989). Elastase inhibitor. Characterization of the human elastase inhibitor molecule associated with monocytes, macrophages, and neutrophils. J. Exp. Med., 169, 1071–86

    Article  PubMed  Google Scholar 

  44. Virca, G. D., Salvesen, G. S. and Travis, J. (1983) Human neutrophil elastase and cathepsin G cleavage sites in the bait region of α2-macroglobulin. Proposed structural limits of the bait region. Hoppe-Seyler’s Z. Physiol. Chem., 364, 1297–302

    Article  CAS  PubMed  Google Scholar 

  45. Ohlsson, K. and Olsson, I. (1974). Neutral proteases of human granulocytes. III. Interaction between granulocyte elastase and plasma protease inhibitors. Scand. J. Clin. Lab. Invest., 34, 349–56

    Article  CAS  PubMed  Google Scholar 

  46. Weiss, S. J., Cumutte, J. T. and Regiani, S. (1986). Neutrophil-mediated solubilization of the subendothelial matrix: oxidative and nonoxidative mechanisms of proteolysis used by normal and chronic granulomatous disease phagocytes. J. Immunol., 136, 636–41

    CAS  PubMed  Google Scholar 

  47. Hochstrasser, K., Schuster, R., Reichert, R. and Heimberger, N. (1972). Detection and quantitative determination of complexes between leukocyte proteases and al-antitrypsin in body secretions and body fluids. Hoppe-Seyler’s Z. Physiol. Chem., 353, 1120–5

    Article  CAS  PubMed  Google Scholar 

  48. Brower, M. S. and Harpel, P. C. (1982). Proteolytic cleavage and inactivation of a2-plasmin inhibitor and Cl inactivator by human polymorphonuclear leukocyte elastase. J. Biol. Chem., 257, 9849–54

    CAS  PubMed  Google Scholar 

  49. Jordan, R. E., Kilpatrick, J. and Nelson, R. M. (1987). Heparin promotes the inactivation of antithrombin by neutrophil elastase. Science, 237, 777–9

    Article  CAS  PubMed  Google Scholar 

  50. Albrecht, G. J., Hochstrasser, K. and Salier, J.-P. (1983). Elastase inhibition by the inter-a-trypsin inhibitor and derived inhibitors of man and cattle. Hoppe-Seyler’s Z. Physiol. Chem., 364, 1703–8

    Article  CAS  PubMed  Google Scholar 

  51. Hochstrasser, K. and Schorn, K. (1976). Characterization of proteinase-inhibitor complexes in the purulent secretions of mucous membranes as complexes between leukocytic elastase and proteinase inhibitors. Protides Biol. Fluids, 23, 231–4

    Google Scholar 

  52. Gauthier, F., Fryksmark, U., Ohlsson, K. and Bieth, J. G. (1982). Kinetics of the inhibition of leukocyte elastase by the bronchial inhibitor. Biochim. Biophys. Acta., 700, 178–83

    Article  CAS  PubMed  Google Scholar 

  53. Thompson, R. C. and Ohlsson, K. (1986). Isolation, properties, and complete amino acid sequence of human secretory leukocyte protease inhibitor, a potent inhibitor of leukocyte elastase. Proc. Natl. Acad. Sci. USA, 83, 6692–6

    Article  CAS  PubMed  Google Scholar 

  54. Kramps, J. A., Van Twisk, C., Klasen, E. C. and Dijkman, J. H. (1988). Interactions among stimulated human polymorphnuclear leukocytes, released elastase and bronchial antileukoprotease. Clin. Sci., 75, 53–62

    CAS  PubMed  Google Scholar 

  55. Campbell, E. J., White, R. R., Senior, R. M., Rodriguez, R. J. and Kuhn, C. (1979). Receptor-mediated binding and internalization of leukocyte elastase by alveolar macrophages in vitro. J. Clin. Invest., 64, 824–33

    Article  CAS  PubMed  Google Scholar 

  56. Taylor, J. C. and Mittman, C. (eds) (1987). Pulmonary Emphysema and Proteolysis: 1986 (New York: Academic Press)

    Google Scholar 

  57. Travis, J. (1988). Structure, function, and control of neutrophil proteinases. Am. J. Med., 84(Suppl. 6A), 37–42

    PubMed  Google Scholar 

  58. Velvart, M. and Fehr, K. (1987). Degradation in vivo of articular cartilage in rheumatoid arthritis and juvenile chronic arthritis by cathepsin-G and elastase from polymorphonuclear leukocytes. Rheumatol. Int., 7, 195–202

    Article  CAS  PubMed  Google Scholar 

  59. Bonney, R. J. and Smith, R. J. (1986). Evidence for the role of neutral proteases in chronic inflammatory diseases in humans In Otterness, I., Lewis, A. and Capetola, R. (eds), Advances in Inflammation Research, Vol. 11, pp. 127–133 (New York: Raven Press)

    Google Scholar 

  60. Schmidt, W. and Havemann, K. (1974). Isolation of elastase-like and chymotrypsin-like neutral proteases from human granulocytes. Hoppe-Seyler’s Z. Physiol. Chem., 355,1077–82

    Article  CAS  PubMed  Google Scholar 

  61. Starkey, P. M. and Barrett, A. J. (1976). Human cathepsin G. Catalytic and immunological properties. Biochem. J., 155, 273–8

    CAS  PubMed  Google Scholar 

  62. Salvesen, G., Farley, D., Shuman, J., Przybyla, A., Reilley, C. and Travis, J. (1987). Molecular cloning of human cathepsin G: structural similarity to mast cell and cytotoxic T lymphocyte proteinases. Biochemistry, 26, 2289–93

    Article  CAS  PubMed  Google Scholar 

  63. Odeberg, H. and Olsson, I. (1976). Microbicidal mechanisms of human granulocytes: synergistic effects of granulocyte elastase and myeloperoxidase or chymotrypsin-like cationic protein. Infect. Immun., 14, 1276–83

    CAS  PubMed  Google Scholar 

  64. Kruse-Jarres, J. D. and Kinzelmann, T. (1986). Pathobiochemistry and clinical role of granulocytes and their lysosomal neutral proteinases in inflammatory processes. Aerztl. Lab., 32, 185–96

    CAS  Google Scholar 

  65. Malemud, C. J. and Janoff, A. (1975). Identification of neutral proteases in human neutrophil granules that degrade articular cartilage proteoglycan. Arthritis Rheum., 18, 361–8

    Article  CAS  PubMed  Google Scholar 

  66. Keiser, H., Greenwald, R. A., Feinstein, G. and Janoff, A. (1976). Degradation of cartilage proteoglycan by human leukocyte granule neutral proteases - a model of joint injury. II. Degradation of isolated bovine nasal cartilage proteoglycan. J. Clin. Invest., 57, 625–32

    Article  CAS  PubMed  Google Scholar 

  67. Starkey, P. M., Barrett, A. J. and Burleigh, M. C. (1977). The degradation of articular collagen by neutrophil proteinases. Biochim. Biophys. Acta, 483, 386–97

    Article  CAS  PubMed  Google Scholar 

  68. Gramse, M., Bingenheimer, C. and Havemann, K. (1980). Degradation of human fibrinogen by chymotrypsin-like neutral protease from human granulocytes. Thromb. Res., 19, 201–9

    Article  CAS  PubMed  Google Scholar 

  69. Vartio, T., Seppä, H. and Vaheri, A. (1981). Susceptibility of soluble and matrix fibronectins to degradation by tissue proteinases, mast cell chymase, and cathepsin G. J. Biol. Chem., 256, 471–7

    CAS  Google Scholar 

  70. Turkington, P. T., Blumsom, N. L. and Elmore, D. T. (1986). The degradation of bovine and human prothrombin by human polymorphonuclear leukocyte cathepsin G. Thromb. Res., 44, 339–46

    Article  CAS  PubMed  Google Scholar 

  71. Venge, P. (1978). Polymorphonuclear proteases and their effects on complement components and neutrophil function. In Havemann, K. and Janoff, A. (eds), Neutral Proteases of Human Polymorphonuclear Leukocytes, pp. 264–82 (Munich: Urban & Schwarzenberg)

    Google Scholar 

  72. Stanaiková, M. and Trnayskÿ, K. (1979). Activation of latent collagenase from polymorphonuclear leukocytes by cathepsin G. Collect. Czech. Chem. Commun., 44, 3177–82

    Article  Google Scholar 

  73. Wintroub, B. U., Klickstein, L. B., Dzau, V. J., and Watt, K. W. K. (1984). Granulocyte—angiotensin system. Identification of angiotensinogen as the plasma protein substrate of leukocyte cathepsin G. Biochemistry, 23, 227–32

    Article  CAS  PubMed  Google Scholar 

  74. Klickstein, L. B., Kaempfer, C. E. and Wintroub, B. U. (1982). The granulocyte angiotensin system. Angiotensin I-converting activity of cathepsin G. J. Biol. Chem., 257, 15042–6

    CAS  Google Scholar 

  75. Reilly, C. F. and Travis, J. (1980). The degradation of human lung elastin by neutrophil proteinases. Biochim. Biophys. Acta., 621, 147–57

    Article  CAS  PubMed  Google Scholar 

  76. Lucey, E. C., Stone, P. J., Breuer, R., Christensen, T. G., Calore, J. D., Catanese, A., Franzblau, C. and Snider, G. L. (1985). Effect of combined human neutrophil cathepsin-G and elastase on induction of secretory cell metaplasia and emphysema in hamsters, with in vitro observations on elastolysis by these enzymes. Am. Rev. Respir. Dis., 132, 362–6

    CAS  PubMed  Google Scholar 

  77. Travis, J., Bowen, J. and Baugh, R. (1978). Human a-1-antichymotrypsin: interaction with chymotrypsin-like proteinases. Biochemistry, 17, 5651–6

    Article  CAS  PubMed  Google Scholar 

  78. Ohlsson, K. and Akesson, U. (1976). αl-Antichymotrypsin interaction with cationic proteins from granulocytes. Clin. Chim. Acta, 73, 285–92

    Article  CAS  PubMed  Google Scholar 

  79. Campbell, E. J. (1982). Human leukocyte elastase, cathepsin G and lactoferrin: family of neutrophil granule glycoproteins that bind to an alveolar macrophage receptor. Proc. Natl. Acad. Sci. USA, 79, 6941–5

    Article  CAS  PubMed  Google Scholar 

  80. Lazarus, G. S., Brown, R. S., Daniels, J. R. and Fullmer, H. M. (1968) Human granulocyte collagenase. Science, 159, 1483–5

    Article  CAS  Google Scholar 

  81. Robertson, P. B., Ryel, R. B., Taylor, R. F., Shyu, K. W. and Fullmer, H. M. (1972). Collagenase localization in polymorphonuclear leukocyte granules in the rabbit. Science, 177, 64–5

    Article  CAS  PubMed  Google Scholar 

  82. Murphy, G., Bretz, U., Baggiolini, M. and Reynolds, J. J. (1980). The latent collagenase and gelatinase of human polymorphonuclear neutrophil leukocytes. Biochem. J., 192, 517–25

    CAS  PubMed  Google Scholar 

  83. Uitto, V.-J., Turto, H., Huttenen, A., Lindy, S. and Uitto, J. (1980). Activation of human leukocyte collagenase by compounds reacting with sulfhydryl groups. Biochim. Biophys. Acta, 613, 168–77

    Article  CAS  PubMed  Google Scholar 

  84. Macartney, H. W. and Tschesche, H. (1982). Latent and active human polymorphonuclear collagenases. Isolation, purification and characterization. Eur. J. Biochem., 130, 71–8

    Article  Google Scholar 

  85. Springman, E., Angleton, E., Birkedal-Hansen, H. and Van Wart, H. E. (1990). Multiple modes of activation of latent human fibroblast collagenase: evidence for the role of a Cys73-active site zinc complex in latency and a ‘cysteine switch’ mechanism for activation. Proc. Natl. Acad. Sci. USA, 87, 364–8

    Article  CAS  PubMed  Google Scholar 

  86. Hasty, K. A., Hibbs, M. S., Kang, A. H. and Mainardi, C. L. (1984). Heterogeneity among human collagenases demonstrated by monoclonal antibody that selectively recognizes and inhibits human neutrophil collagenase. J. Exp. Med., 159, 1455–63

    Article  CAS  PubMed  Google Scholar 

  87. Ohlsson, K. (1980). Polymorphonuclear leukocyte collagenase. In Woolley, D. E. and Evanson, J. M. (eds), Collagenase in Normal and Pathological Connective Tissues, pp. 209–222 (Chichester: Wiley)

    Google Scholar 

  88. Hibbs, M. A., Hasty, K. A., Kang, A. H. and Mainardi, C. L. (1984). Secretion of collagenolytic enzymes by human polymorphonuclear leukocytes. Collagen Rel. Res., 4, 467–78

    Article  CAS  Google Scholar 

  89. Harris, E. D. Jr., DiBona, D. R. and Krane, S. M. (1969). Collagenases in human synovial fluid. J. Clin. Invest., 48, 2104–13

    Article  CAS  PubMed  Google Scholar 

  90. Pelletier, J.-P., Martel-Pelletier, J., Howell, D. S., Ghandur-Mnaymneh, L., Enis, J. E. and Woessner, J. F., Jr (1983). Collagenase and collagenolytic activity in human osteoarthritic cartilage. Arthritis Rheum., 26, 63–8

    Article  CAS  PubMed  Google Scholar 

  91. Hasty, K. A., Jeffrey, J. J., Hibbs, M. S. and Welgus, H. G. (1987). The collagen substrate specificity of human neutrophil collagenase. J. Biol. Chem., 262, 10048–52

    CAS  PubMed  Google Scholar 

  92. Sopata, I. and Dancewicz, A. (1974). A neutral protease from human leukocytes involved in collagen degradation. Przegl. Lek., 31, 435–9

    CAS  PubMed  Google Scholar 

  93. Uitto, V.-J., Schwartz, D. and Veis, A. (1980). Degradation of basement-membrane collagen by neutral proteases from human leukocytes. Eur. J. Biochem., 105, 409–17

    Article  CAS  PubMed  Google Scholar 

  94. Hibbs, M. S., Hasty, K. A., Seyer, J. M., Kang, A. H. and Mainardi, C. L. (1985). Biochemical and immunological characterization of the secreted forms of human neutrophil gelatinase. J. Biol. Chem., 260, 2493 –2500

    CAS  PubMed  Google Scholar 

  95. Wilhelm, S. M., Collier, I. E., Manner, B. L., Eisen, A. Z., Grant, G. A. and Goldberg, G. I. (1989). SV40 transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages. J. Biol. Chem., 264,17213–21

    CAS  PubMed  Google Scholar 

  96. Peppin, G. J. and Weiss, S. J. (1986). Activation of the endogenous metalloproteinase, gelatinase, by triggered human neutrophils. Proc. Natl. Acad. Sci. USA, 83, 4322–26

    Article  CAS  PubMed  Google Scholar 

  97. Sopata, I., Wojteka-Lukasik, E. and Maslinski, S. (1986). Activation of latent human granulocyte gelatinase by rat mast cell protease. Folia Histochem. Cytobiol., 24, 133–7

    CAS  PubMed  Google Scholar 

  98. Sottrup-Jensen, L. and Birkedal-Hansen, H. (1989). Human fibroblast collagenaseα-macroglobulin interactions. Localization of cleavage sites in the bait regions of five mammalian a-macroglobulins. J. Biol. Chem., 264, 393–401

    CAS  PubMed  Google Scholar 

  99. Cawston, T. E., Galloway, W. A., Mercer, E., Murphy, G. and Reynolds, J. J. (1981). Purification of rabbit bone inhibitor of collagenase. Biochem. J., 195, 159–65

    CAS  PubMed  Google Scholar 

  100. Dean, D. D. and Woessner, J. F., Jr (1983). Extracts of human articular cartilage contain an inhibitor of tissue metalloproteinases. Biochem. J., 218, 277–80

    Google Scholar 

  101. Dean, D. D., Martel-Pelletier, J., Pelletier, J.-P., Howell, D. S. and Woessner, J. F., Jr (1989). Evidence for metalloproteinase and metalloproteinase inhibitor imbalance in human osteoarthritic cartilage. J. Clin. Invest., 84, 678–85

    Article  CAS  PubMed  Google Scholar 

  102. Dewald, B., Bretz, U. and Baggiolini, M. (1982). Release of gelatinase from a novel secretory compartment of human neutrophils. J. Clin. Invest., 70, 518–25

    Article  CAS  PubMed  Google Scholar 

  103. Ishikawa, I. and Cimasoni, G. (1977). Isolation of cathepsin D from human leukocytes. Biochim. Biophys. Acta, 480, 228–40

    Article  CAS  PubMed  Google Scholar 

  104. Roughley, P. J. (1977). The degradation of cartilage proteoglycans by tissue proteinases. Proteoglycan heterogeneity and the pathway of proteolytic degradation. Biochem. J., 167, 639–46

    CAS  PubMed  Google Scholar 

  105. Woessner, J. F., Jr (1979). Acid cathepsins. In: Houck, R. J. (ed.) Handbook of Inflammation, Vol. 1: Chemical Messengers of the Inflammatory Process, pp. 261–84 (Amsterdam: Elsevier)

    Google Scholar 

  106. Baggiolini, M., Bretz, U., Dewald, B. and Feigenson, M. E. (1978). The polymorphonuclear leukocyte. Agents Actions, 3, 3–11

    Article  Google Scholar 

  107. Kao, R. C., Wehner, N. G., Skubitz, K. M., Gray, B. H. and Hoidal, J. R. (1988). Proteinase 3. A distinct human polymorphonuclear leukocyte proteinase that produces emphysema in hamsters. J. Clin. Invest., 82, 1963–73

    Article  CAS  PubMed  Google Scholar 

  108. Unanue, E. R. and Allen, P. M. (1987). The basis for the immunoregulatory role of macrophages and other accessory cells. Science, 236, 551–7

    Article  CAS  PubMed  Google Scholar 

  109. Roska, A. K. and Lipsky, P. E. (1989). Monocytes and macrophages. In Kelley, W. N., Harris, E. D., Jr, Ruddy, S. and Sledge, C. B. (eds) Textbook of Rheumatology, 3rd edn, pp. 346–66 (Philadelphia: W. B. Saunders)

    Google Scholar 

  110. Johnston, R. B., Jr (1988). Current concepts: immunology. Monocytes and macrophages. N. Engl. J. Med., 318, 747–52

    Article  PubMed  Google Scholar 

  111. De Weger, R. A., Runhaar, B. A. and Den Otter, W. (1986). Cytotoxicity by macrophages and monocytes. Methods Enzymol., 132, 458–66

    Article  PubMed  Google Scholar 

  112. Adams, D. O. (1980). Effector mechanisms of cytolytically activated macrophages. I. Secretion of neutral proteases and effect of protease inhibitors. J. Immunol., 124, 286–92

    CAS  PubMed  Google Scholar 

  113. Adams, D. O., Kao, K.-J., Farb, R. and Pizzo, S. V. (1980). Effector mechanisms of cytolytically activated macrophages. II. Secretion of a cytolytic factor by activated macrophages and its relationship to secreted neutral proteases. J. Immunol., 124, 293–300

    CAS  PubMed  Google Scholar 

  114. Johnson, W. J., Pizzo, S. V., Imber, M. J. and Adams, D. O. (1982). Receptors for maleylated proteins regulate secretion of neutral proteases by murine macrophages. Science, 218, 574–6

    Article  CAS  PubMed  Google Scholar 

  115. Reidarson, T. H., Granger, G. A. and Klostergaard, J. (1982). Inducible macrophage cytotoxins. II. Tumor lysis mechanism involving target cell-binding proteases. J. Natl. Cancer Inst., 69, 889–94

    CAS  PubMed  Google Scholar 

  116. Okawa, Y., Ozeki, Y., Suzuki, K., Sakai, K., Suzuki, S. and Suzuki, M. (1987). Correlation between tumor cell cytotoxicity and serine protease activity of peritoneal macrophages from mice treated with bakers’ yeast mannans. Chem. Pharm. Bull., 35, 1138–43

    Article  CAS  PubMed  Google Scholar 

  117. Rojas-Espinosa, O., Arce-Paradez, P., Dannenberg, A. M., Jr and Kamenetz, R. L. (1975). Macrophage esterase: identification, purification and properties of a chymotrypsin-like esterase from lung that hydrolyses and transfers nonpolar amino acid esters. Biochim. Biophys. Acta, 403, 161–79

    Article  CAS  PubMed  Google Scholar 

  118. Kominami, E., Tsukahara, T., Hara, K. and Katunuma, N. (1988). Biosynthesis and processing of lysosomal cysteine proteinases in rat macrophages. FEBS Lett., 231, 225–8

    Article  CAS  PubMed  Google Scholar 

  119. Bando, Y., Kominami, E. and Katunuma, N. (1986). Purification and tissue distribution of rat cathepsin L. J. Biochem., 100, 35–42

    CAS  PubMed  Google Scholar 

  120. Kato, T., Kojima, K. and Murachi, T. (1972). Proteases of macrophages in rat peritoneal exudate, with special reference to the effects of actinomycete protease inhibitors. Biochim. Biophys. Acta, 289, 187–94

    Article  CAS  PubMed  Google Scholar 

  121. Orlowski, M., Orlowski, R., Chang, J. C., Wilk, E. and Lesser, M. (1984). A sensitive procedure for determination of cathepsin D: activity in alveolar and peritoneal macrophages. Mol. Cell. Biochem., 64, 155–62

    Article  CAS  PubMed  Google Scholar 

  122. Lesser, M., Chang, J. C., Orlowski, J., Kilburn, K. H. and Orlowski, M. (1983). Cathepsin B and prolyl endopeptidase activity in rat peritoneal and alveolar macrophages. J. Lab. Clin. Med., 101, 327–34

    CAS  PubMed  Google Scholar 

  123. Reilly, J. J., Jr, Mason, R. W., Chen, P., Joseph, L. J., Sukhatme, V. P., Yee, R. and Chapman, H. A., Jr (1989). Synthesis and processing of cathepsin L, and elastase, by human alveolar macrophages. Biochem. J., 257, 493–8

    CAS  PubMed  Google Scholar 

  124. Cohn, Z. A. and Wiener, E. (1963). The particulate hydrolases of macrophages. II. Biochemical and morphological response to particulate ingestion. J. Exp. Med., 118, 1009–20

    Article  CAS  PubMed  Google Scholar 

  125. Chapman, H. A. and Stone, O. L. (1984). Co-operation between plasmin and elastase in elastin degradation by intact murine macrophages. Biochem. J., 222, 721–8

    CAS  PubMed  Google Scholar 

  126. Mason, R. W. (1988). The role of cysteine proteinases in elastin degradation. In Glauert, A. M. (ed.), Control of Tissue Damage. Res. Monogr. Cell Tissue Physiol., 15, pp. 259–67 (Amsterdam: Elsevier)

    Google Scholar 

  127. Werb, Z., Banda, M. J. and Jones, P. A. (1980). Degradation of connective tissue matrices by macrophages. I. Proteolysis of elastin, glycoproteins and collagen by proteinases isolated from macrophages. J. Exp. Med., 152, 1340–57

    Article  CAS  PubMed  Google Scholar 

  128. Roberts, C. R. and Dean, R. T. (1986). Degradation of cartilage by macrophages in culture: evidence for the involvement of an enzyme which is associated with the cell surface. Connect. Tissue Res., 14, 199–212

    Article  CAS  PubMed  Google Scholar 

  129. Silver, I. A., Murrills, R. J. and Etherington, D. J. (1988). Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp. Cell. Res., 175, 266–76

    Article  CAS  PubMed  Google Scholar 

  130. Wahl, L. M., Wahl, S. M., Mergenhagen, S. E. and Martin, G. R. (1974). Collagenase production by endotoxin activated macrophages. Proc. Natl. Acad. Sci. USA, 71, 3598–601

    Article  CAS  PubMed  Google Scholar 

  131. Wahl, L. M. and Mergenhagen, S. E. (1988). Regulation of monocyte/macrophage collagenase. J. Oral Pathol., 17, 452–5

    Article  CAS  PubMed  Google Scholar 

  132. Cury, J. D., Campbell, E. J., Lazarus, C. J., Albin, R. J. and Welgus, H. G. (1988). Selective up-regulation of human alveolar macrophage collagenase production by lipopolysaccharide and comparison to collagenase production by fibroblasts. J. Immunol., 141, 4306–12

    CAS  PubMed  Google Scholar 

  133. Campbell, E. J., Cury, J. D., Lazarus, C. J. and Welgus, H. G. (1987). Monocyte procollagenase and tissue inhibitor of metalloproteinases: identification, characterization and regulation of secretion. J. Biol. Chem., 262, 15862–8

    CAS  PubMed  Google Scholar 

  134. Mainardi, C. L., Seyer, J. M. and Kang, A. H. (1980). Type-specific collagenolysis: a type V collagen-degrading enzyme from macrophages. Biochem. Biophys. Res. Commun., 97,1108–15

    Article  CAS  PubMed  Google Scholar 

  135. Hibbs, M. S., Hoidal, J. R. and Kang, A. H. (1987). Expression of a metalloproteinase that degrades native type V collagen and denatured collagens by cultured human alveolar macrophages. J. Clin. Invest., 80, 1644–50

    Article  CAS  PubMed  Google Scholar 

  136. Welgus, H. G., Campbell, E. J., Cury, J. D., Eisen, A. Z., Senior, R. M., Wilhelm, S. M. and Goldberg, G. I. (1988). Neutral metalloproteinases produced by human mononuclear phagocytes. J. Cell Biol., 107(6, part III), 376A

    Google Scholar 

  137. Hauser, P. and Vaes, G. (1978). Degradation of cartilage proteoglycans by a neutral proteinase secreted by rabbit bone-marrow macrophages in culture. Biochem. J., 172, 275–84

    CAS  PubMed  Google Scholar 

  138. Banda, M. J. and Werb, Z. (1981). Mouse macrophage elastase. Purification and characterization as a metalloproteinase. Biochem. J., 193, 589–605

    CAS  PubMed  Google Scholar 

  139. Takemura, R. and Werb, Z. (1984). Regulation of elastase and plasminogen activator secretion in resident and inflammatory macrophages by receptors for the Fc domain of immunoglobulin G. J. Exp. Med., 159, 152–66

    Article  CAS  PubMed  Google Scholar 

  140. Banda, M. J., Clark, E. J., Sinha, S. and Travis, J. (1987). Interaction of mouse macrophage elastase with native and oxidized human α1-proteinase inhibitor. J. Clin. Invest., 79, 1314–7

    Article  CAS  PubMed  Google Scholar 

  141. Banda, M. J., Rice, A. G., Griffin, G. L. and Senior, R. M. (1988). α1-Proteinase inhibitor is a neutrophil chemoattractant after proteolytic inactivation by macrophage elastase. J. Biol. Chem., 263, 4481–4

    CAS  PubMed  Google Scholar 

  142. Werb, Z., Banda, M. J., McKerrow, J. H. and Sandhaus, R. A. (1982). Elastases and elastin degradation. J. Invest. Dermatol., 79(Suppl. 1), 154s-159s

    Article  PubMed  Google Scholar 

  143. Senior, R. M., Campbell, E. J., Landis, J. A., Cox, F. R., Kuhn, C. and Koren, H. S. (1982). Elastase of U-937 monocyte-like cells: comparisons with elastases derived from human monocytes and neutrophils and murine macrophage-like cells. J. Clin. Invest., 69, 384–93

    Article  CAS  PubMed  Google Scholar 

  144. Fuks, A., Zucker-Franklin, D. and Franklin, E. C. (1983). Identification of elastases associated with purified plasma membranes isolated from human monocytes and lymphocytes. Biochim. Biophys. Acta, 755, 195–203

    Article  CAS  PubMed  Google Scholar 

  145. Sandhaus, R. A., McCarthy, K. M., Musson, R. A. and Henson, P. M. (1983). Elastolytic proteinases of the human macrophage. Chest, 83(5, Suppl.), 60s-62s

    CAS  PubMed  Google Scholar 

  146. Albin, R. J., Senior, R. M., Welgus, H. G., Connolly, N. L. and Campbell, E. J. (1987). Human alveolar macrophages secrete an inhibitor of metalloproteinase elastase. Am. Rev. Respir. Dis., 135, 1281–5

    CAS  PubMed  Google Scholar 

  147. White, R., Lee, D., Habicht, G. S. and Janoff, A. (1981). Secretion of a1-proteinase inhibitor by cultured rat alveolar macrophages. Am. Rev. Resp. Dis., 123, 447–9

    CAS  PubMed  Google Scholar 

  148. Remold-O’Donnell, E. and Lewandrowski, K. (1983). Two proteinase inhibitors associated with peritoneal macrophages. J. Biol. Chem., 258, 3251–7

    PubMed  Google Scholar 

  149. Krivit, W., Miller, J., Nowicki, M. and Freier, E. (1988). Contribution of monocyte-macrophage system to serum αl-antitrypsin. J. Lab. Clin. Med., 112, 437–42

    CAS  PubMed  Google Scholar 

  150. Perlmutter, D. H., Travis, J. and Punsal, P. I. (1988). Elastase regulates the synthesis of its inhibitor, α1-proteinase inhibitor, and exaggerates the defect in homozygous PiZZ α1PI deficiency. J. Clin. Invest., 81, 1774–80

    Article  CAS  PubMed  Google Scholar 

  151. Benfey, P. N., Yin, F. H. and Leder, P. (1987). Cloning of the mast cell protease RMCP II. Evidence for cell specific expression and a multigene family. J. Biol. Chem., 262, 5377–84

    CAS  PubMed  Google Scholar 

  152. Woodbury, R. G., Le Trong, H. and Neurath, H. (1987). Structure and function of mast cell proteases. Acta Histochem. Cytochem., 20, 261–9

    Article  CAS  Google Scholar 

  153. Irani, A. A., Schechter, N. M., Craig, S. S., DeBlois, G. and Schwartz, L. B. (1986). Two types of human mast cells that have distinct neutral protease compositions. Proc. Natl. Acad. Sci. USA, 83, 4464–8

    Article  CAS  PubMed  Google Scholar 

  154. Graziano, F. M. (1988). Mast cells and mast cell products. Methods Enzymol., 162, 501–22

    Article  CAS  PubMed  Google Scholar 

  155. Le Trong, H., Parmalee, D. C., Walsh, K. A., Neurath, H. and Woodbury, R. G. (1987). Amino acid sequence of rat mast cell protease I (chymase). Biochemistry, 26, 6988–94

    Article  PubMed  Google Scholar 

  156. Woodbury, R. G., Katunuma, N., Kobayashi, K., Titani, K. and Neurath, H. (1978). Covalent structure of a group-specific protease from rat small intestine. Biochemistry, 17, 811–19

    Article  CAS  PubMed  Google Scholar 

  157. Le Trong, H., Newlands, G. F. J., Miller, H. R. P., Charbonneau, H., Neurath, H. and Woodbury, R. G. (1989). Amino acid sequence of a mouse mucosal mast cell protease. Biochemistry, 28, 391–5

    Article  CAS  PubMed  Google Scholar 

  158. Vanderslice, P., Craik, C. S., Nadel, J. A. and Caughey, G. H. (1989). Molecular cloning of dog mast cell tryptase and a related protease: structural evidence of a unique mode of serine protease activation. Biochemistry, 28, 4148–55

    Article  CAS  PubMed  Google Scholar 

  159. Remington, S. J., Woodbury, R. G., Reynolds, R. A., Matthews, B. W. and Neurath, H. (1988). The structure of the rat mast cell protease II at 1.9 Å resolution. Biochemistry, 27, 8097–104

    Article  CAS  PubMed  Google Scholar 

  160. Schechter, N. M., Fräki, J. E., Geesin, J. C. and Lazarus, G. S. (1983) Human skin chymotryptic proteinase. Isolation and relation to cathepsin G and rat mast cell proteinase I. J. Biol. Chem., 258, 2973–8

    CAS  PubMed  Google Scholar 

  161. Johnson, L. A., Moon, K. E. and Eisenberg, M. (1986). Purification to homogeneity of the human skin chymotryptic proteinase ‘chymase’. Anal. Biochem., 155, 358–64

    Article  CAS  PubMed  Google Scholar 

  162. Kido, H., Fukusen, N. and Katunuma, N. (1985). Chymotrypsin-and trypsin-type serine proteases in rat mast cells: properties and functions. Arch. Biochem. Biophys., 239, 436–43

    Article  CAS  PubMed  Google Scholar 

  163. Muramatu, M., Itoh, T., Takei, M. and Endo, K. (1988). Tryptase in rat mast cells: properties and inhibition by various inhibitors in comparison with chymase. Biol. Chem. Hoppe-Seyler, 369, 617–26

    Article  CAS  PubMed  Google Scholar 

  164. Schwartz, L. B., Lewis, R. A. and Austen, K. F. (1981). Tryptase from human pulmonary mast cells. Purification and characterization. J. Biol. Chem., 256, 11939–43

    CAS  PubMed  Google Scholar 

  165. Tanaka, T., Mc Rae, B. J., Cho, K., Cook, R., Fraki, J. E., Johnson, D. A. and Powers, J. C. (1983). Mammalian tissue trypsin-like enzymes. Comparative reactivities of human skin tryptase, human lung tryptase, and bovine trypsin with peptide 4-nitroanilide and thioester substrates. J. Biol. Chem., 258, 13552–7

    CAS  PubMed  Google Scholar 

  166. Cromlish, J. A., Seidah, N. G., Marcinkiewicz, M., Hamelin, J., Johnson, D. A. and Chretien, M. (1987). Human pituitary tryptase: molecular forms, NH2-terminal sequence, immunocytochemical localization and specificity with prohormone and fluoregenic substrates. J. Biol. Chem., 262, 1363–73

    CAS  PubMed  Google Scholar 

  167. Katunuma, N., Fukusen, N. and Kido, H. (1986). Biological functions of serine proteases in the granules of rat mast cells. Adv. Enzyme Regul., 25, 241–55

    Article  CAS  PubMed  Google Scholar 

  168. Kido, H., Yokogoshi, Y. and Katunuma, N. (1988). Kunitz-type protease inhibitor found in rat mast cells. Purification, properties and amino acid sequences. J. Biol. Chem., 263,18104–7

    CAS  PubMed  Google Scholar 

  169. Fritz, H., Kruck, J., Rüsse, I. and Liebich, H. G. (1979) Immunofluorescence studies indicate that the basic trypsin-kallikrein-inhibitor of bovine organs (Trasylol) originates from mast cells. Hoppe-Seyler’s Z. Physiol. Chem., 360, 437–44

    Article  CAS  PubMed  Google Scholar 

  170. Katunuma, N. and Kido, H. (1988). Biologic functions of serine proteases in mast cells in allergic inflammation. J. Cell. Biochem., 38, 291–302

    Article  CAS  PubMed  Google Scholar 

  171. Mundy, D. I. and Strittmatter, W. J. (1985). Requirement for metalloendoprotease in exocytosis: evidence in mast cells and adrenal chromaffin cells. Cell, 40, 645–56

    Article  CAS  PubMed  Google Scholar 

  172. Kido, H., Fukusen, N. and Katunuma, N. (1985). Antibody and inhibitor of chymase inhibit histamine release in immunoglobulin E-activated mast cells. Biochem. Int., 10, 863–72

    CAS  PubMed  Google Scholar 

  173. Schick, B. and Austen, K. F. (1985). Pharmacological modulation of activation-secretion of rat serosal mast cells by chymase, an endogenous secretory granule protease. Immunology, 56, 513–22

    CAS  PubMed  Google Scholar 

  174. Maier, M., Spragg, J. and Schwartz, L. B. (1983). Inactivation of human high molecular weight kininogen by human mast cell tryptase. J. Immunol., 130, 2352–6

    CAS  PubMed  Google Scholar 

  175. Schwartz, L. B., Kawahara, M. S., Hugh, T. E., Vik, D., Fearon, D. T. and Austen, K. F. (1983). Generation of C3a anaphylatoxin from human C3 by human mast cell tryptase. J. Immunol., 130, 1891–5

    CAS  PubMed  Google Scholar 

  176. Majima, M., Tani, Y. and Katori, M. (1987). Loss of the activity of human coagulation factor XII by a chymotrypsin-like protease activated in rat mast cells during degranulation with compound 48/80. Thromb. Res., 46, 855–68

    Article  CAS  PubMed  Google Scholar 

  177. Kido, H., Fukusen, N., Katunuma, N., Morita, T. and Iwanaga, S. (1985). Tryptase from rat mast cells converts bovine prothrombin to thrombin. Biochem. Biophys. Res. Commun., 132, 613–19

    Article  CAS  PubMed  Google Scholar 

  178. Alter, S. C., Metcalfe, D. D., Bradford, T. R. and Schwartz, L. B. (1987). Regulation of human mast cell tryptase. Effects of enzyme concentration, ionic strength and the structure and negative charge density of polysaccharides. Biochem. J., 248, 821–8

    CAS  PubMed  Google Scholar 

  179. Gervasoni, J. E., Jr, Conrad, D. H., Hugh, T. E., Schwartz, L. B. and Ruddy, S. (1986). Degradation of human anaphylatoxin C3a by rat peritoneal mast cells: a role for the secretory granule enzyme chymase and heparin proteoglycan. J. Immunol., 136, 285–92

    CAS  PubMed  Google Scholar 

  180. Caughey, G. H., Leidig, F., Viro, N. F. and Nadel, J. A. (1988). Substance P and vasoactive intestinal peptide degradation by mast cell tryptase and chymase. J. Pharmacol. Exp. Ther., 244, 133–7

    CAS  PubMed  Google Scholar 

  181. Le Trong, H., Neurath, H. and Woodbury, R. G. (1987). Substrate specificity of the chymotrypsin-like protease in secretory granules isolated from rat mast cells. Proc. Natl. Acad. Sci. USA, 84, 364–7

    Article  PubMed  Google Scholar 

  182. Wintroub, B. U., Kaempfer, C. E., Schechter, N. M. and Proud, D. (1986). A human lung mast cell chymotrypsin-like enzyme — identification and partial characterisation. J. Clin. Invest., 77, 196–201

    Article  CAS  PubMed  Google Scholar 

  183. King, S. J., Miller, H. R. P., Newlands, G. F. J. and Woodbury, R. G. (1985). Depletion of mucosal mast cell protease by corticosteroids: effect on intestinal anaphylaxis in the rat. Proc. Natl. Acad. Sci. USA, 82, 1214–8

    Article  CAS  PubMed  Google Scholar 

  184. MacQueen, G., Marshall, J., Perdue, M., Siegel, S. and Bienenstock, J. (1989). Pavlovian condition of rat mucosal mast cells to secrete rat mast cell protease II. Science, 243, 83–5

    Article  CAS  PubMed  Google Scholar 

  185. Vartio, T., Seppä, H. and Vaheri, A. (1981). Susceptibility of soluble and matrix fibronectins to degradation by tissue proteinases, mast cell chymase, and cathepsin G. J. Biol. Chem., 256, 471–7

    CAS  PubMed  Google Scholar 

  186. Sage, H., Balian, G., Vogel, A. M. and Bornstein, P. (1984). Type VIII collagen. Synthesis by normal and malignant cells in culture. Lab. Invest., 50, 219–31

    CAS  PubMed  Google Scholar 

  187. Seppä, H. (1979). The role of chymotrypsin-like protease of rat mast cells in inflammatory vasopermeability and fibrinolysis. Inflammation, 4, 1–8

    Article  Google Scholar 

  188. Sage, H., Woodbury, R. G. and Bornstein, P. (1979). Structural studies on human type IV collagen. J. Biol. Chem., 254, 9893–900

    CAS  PubMed  Google Scholar 

  189. Johnson, D. A. and Cawston, T. E. (1985). Human lung mast cell tryptase fails to activate procollagenase or degrade proteoglycan. Biochem. Biophys. Res. Commun., 132, 453–9

    Article  CAS  PubMed  Google Scholar 

  190. Birkedal-Hansen, H., Cobb, C. M., Taylor, R. E. and Fullmer, H. M. (1975). Activation of fibroblast procollagenase by mast cell proteases. Biochim. Biophys. Acta, 438, 273–86

    Google Scholar 

  191. Eisenberg, M., Johnson, L. and Moon, K. E. (1984). Serine proteinase activation of latent human skin collagenase. Biochem. Biophys. Res. Commun., 125, 279–85

    Article  CAS  PubMed  Google Scholar 

  192. Sopata, I., Wojteka-Lukasik, E. and Maslinski, S. (1986). Activation of latent human granulocyte gelatinase by rat mast cell protease. Folia Histochem. Cytobiol., 24, 133–7

    CAS  PubMed  Google Scholar 

  193. Gruber, B. L., Schwartz, L. B., Ramamurthy, N. S., Irani, M. and Marchese, M. J. (1988). Activation of latent rheumatoid synovial collagenase by human mast cell tryptase. J. Immunol., 140, 3936–42

    CAS  PubMed  Google Scholar 

  194. Bleackley, R. C., Duggan, B., Ehrman, N. and Lobe, C. G. (1988). Isolation of two cDNA sequences which encode cytotoxic cell proteases. FEES Lett., 234, 153–9

    Article  CAS  Google Scholar 

  195. Gershenfeld, H. K., Hershberger, R. J., Mueller, C. and Weissman, I. L. (1988). A T cell-and natural killer cell-specific, trypsin-like serine protease. Implications of a protease cascade. Ann. N.Y. Acad. Sci., 532, 367–79

    Article  CAS  PubMed  Google Scholar 

  196. Pasternack, M. S. and Eisen, H. N. (1985). A novel serine esterase expressed by cytotoxic T lymphocytes. Nature (London), 314, 743–5

    Article  CAS  Google Scholar 

  197. Gershenfeld, H. K. and Weissman, I. L. (1986). Cloning of a cDNA for a T cell-specific serine protease from a cytotoxic T lymphocyte. Science, 232, 854–8

    Article  CAS  PubMed  Google Scholar 

  198. Lobe, C. G., Finlay, B. B., Paranchych, W., Paetkau, V. H. and Bleackley, R. C. (1986). Novel serine proteases encoded by two cytotoxic T lymphocyte-specific genes. Science, 232, 858–62

    Article  CAS  PubMed  Google Scholar 

  199. Brunet, J., Dosetto, F., Denizot, F., Mattei, M.-G., Clark, W. R., Haqqi, T. M., Ferrier, P., Nabholz, M., Schmitt-Verhulst, A. M., Luciani, M.-F. and Goldstein, P. (1986). The inducible cytotoxic T-lymphocyte-associated gene transcript CTLA-1 sequence and gene localization to mouse chromosome 14. Nature, 322, 268–71

    Article  CAS  PubMed  Google Scholar 

  200. Gershenfeld, H. K., Hershberger, R. J., Shows, T. B. and Weissman, I. L. (1988). Cloning and chromosomal assignment of a human cDNA encoding a T cell-and natural killer cell-specific trypsin-like serine protease. Proc. Natl. Acad. Sci. USA, 85, 1184–8

    Article  CAS  PubMed  Google Scholar 

  201. Trapani, J. A., Klein, J. L., White, P. C. and Dupont, B. (1988). Molecular cloning of an inducible serine esterase gene from human cytotoxic lymphocytes. Proc. Natl. Acad. Sci. USA, 85, 6924–8

    Article  CAS  PubMed  Google Scholar 

  202. Schmid, J. and Weissmann, C. (1987). Induction of mRNa for a serine protease and a beta-thromboglobulin-like protein in mitogen-stimulated human leukocytes. J. Immunol., 139, 250–6

    CAS  PubMed  Google Scholar 

  203. Jenne, D., Rey, C., Masson, D., Stanley, K., Plaetinck, G. and Tschopp, J. (1988). cDNA cloning of granzyme C, a granule associated serine protease of cytolytic T lymphocytes. J. Immunol., 140, 318–23

    CAS  PubMed  Google Scholar 

  204. Kwon, B. S., Kestler, D., Lee, E., Wakulchik, M. and Young, J. D. (1988). Isolation and sequence analysis of serine protease cDNAs from mouse cytolytic lymphocytes-T. J. Exp. Med., 168, 1839–54

    Article  CAS  PubMed  Google Scholar 

  205. Simon, M. M., Hoschützky, H., Fruth, U., Simon, H. G. and Kramer, M. D. (1986). Purification and characterization of a T-cell-specific serine proteinase (TSP-1) from cloned cytolytic T-lymphocytes. EMBO J., 5, 3267–74

    CAS  PubMed  Google Scholar 

  206. Masson, D. and Tschopp, J. (1987). A family of serine esterases in lytic granules of cytolytic T lymphocytes. Cell, 49, 679–85

    Article  CAS  PubMed  Google Scholar 

  207. Jenne, D., Rey, C., Haefliger, J. A., Qiao, B. Y., Groscurth, P. and Tschopp, J. (1988). Identification and sequencing of cDNA clones encoding the granule-associated serine proteases granzymes D, E, and F of cytolytic T lymphocytes. Proc. Natl. Acad. Sci. USA, 84, 4814–8

    Article  Google Scholar 

  208. Murphy, M. E. P., Moult, J., Bleackley, R. C., Gershenfeld, H., Weissman, I. L. and James, M. N. G. (1988). Comparative molecular model building of 2 serine proteinases from cytotoxic lymphocytes T. Proteins, 4, 190–204

    Article  CAS  PubMed  Google Scholar 

  209. Hatcher, V. B., Oberman, M. S., Lazarus, G. S. and Grayzel, A. I. (1978). A cytotoxic proteinase isolated from human lymphocytes. J. Immunol., 120, 665–70

    CAS  PubMed  Google Scholar 

  210. Fruth, U., Sinigaglia, F., Schlesier, M., Kilgus, J., Kramer, M. D. and Simon, M. M. (1987). A novel serine proteinase (HuTSP) isolated from a cloned human CD8+ cytolytic T cell line is expressed and secreted by activated CD4+ and CD8+ lymphocytes. Eur. J. Immunol., 17, 1625–33

    Article  CAS  PubMed  Google Scholar 

  211. Krähenbühl, O., Rey, C., Jenne, D., Lanzavecchia, A., Groscurth, P., Carrel, S. and Tschopp, J. (1988). Characterization of granzymes A and B isolated from granules of cloned human cytotoxic T lymphocytes. J. Immunol., 141, 3471–7

    PubMed  Google Scholar 

  212. Hameed, A., Lowrey, D. M., Lichtenheld, M. and Podack, E. R. (1988). Characterization of three serine esterases isolated from human IL-2 activated killer cells. J. Immunol., 141, 3142–7

    CAS  PubMed  Google Scholar 

  213. Poe, M., Bennett, C. D., Biddison, W. E., Blake, J. T., Norton, G. P., Rodkey, J. A., Sigal, N. H.,Turner, R. V., Wu, J. K. and Zweerink, H. J. (1988) Human cytotoxic lymphocyte tryptase. Its purification from granules and the characterization of inhibitor and substrate specificity. J. Biol. Chem., 263, 13215–22

    CAS  PubMed  Google Scholar 

  214. Hudig, D., Redelman, D. and Minning, L. L. (1984). The requirement for proteinase activity for human lymphocyte-mediated natural cytotoxicity (NK): evidence that the proteinase is serine dependent and has aromatic amino acid specificity of cleavage. J. Immunol., 133, 2647–54

    CAS  PubMed  Google Scholar 

  215. Masson, D. and Tschopp, J. (1988). Inhibition of lymphocyte protease granzyme A by antithrombin III. Mol. Immunol., 25, 1283–90

    Article  CAS  PubMed  Google Scholar 

  216. Ganea, D., Cearlock, D., Minowada, J. and Dray, S. (1987). A serine proteinase inhibitor produced by an HTLV 1 virus-transformed human T lymphocyte line. J. Immuns., 138, 1208–14

    CAS  Google Scholar 

  217. Ganea, D., Teodorescu, M. and Dray, S. (1986). A low molecular weight proteinase inhibitor produced by T lymphocytes. Immunology, 57, 85–92

    CAS  PubMed  Google Scholar 

  218. Ikuta, T., Okubo, H., Kudo, J., Ishibashi, H. and Inoue, T. (1982). Alphas-antitrypsin synthesis by human lymphocytes. Biochem. Biophys. Res. Commun., 104, 1509–16

    Article  CAS  PubMed  Google Scholar 

  219. Jenne, D. E. and Tschopp, J. (1988). Granzymes, a family of serine proteases released from granules of cytolytic T lymphocytes upon T cell receptor stimulation. Immunol. Rev., 103, 53–72

    Article  CAS  PubMed  Google Scholar 

  220. Thibault, G. and Genest, J. (1981). Tonin, an esteroprotease from rat submaxillary glands. Biochim. Biophys. Acta, 660, 23–9

    Article  CAS  PubMed  Google Scholar 

  221. Ashe, B. M., Biddison, W. E., Blake, J. T., Norton, G., Poe, M., Sigal, N. H. and Zweerink, H. J. (1988). A comparison of trypsin-like protease activities in extracts of human and murine cytolytic T-cells. Ann. N.Y. Acad. Sci., 532, 439–41

    Article  Google Scholar 

  222. Zunino, S. J., Allison, N. J., Kam, C. M., Powers, J. C. and Hudig, D. (1988). Localization, implications for function and gene expression of chymotrypsin-like proteinases of cytotoxic RNK-16 lymphocytes. Biochim. Biophys. Acta, 967, 331–40

    Article  CAS  PubMed  Google Scholar 

  223. Hudig, D., Minning, L. and Redelman, D. (1985). A serine proteinease as a trigger for human natural killer lymphocyte-mediated cytolysis. In Henkart, P. and Martz, E. (eds), Mechanisms of Cell-Mediated Toxicity, II. Adv. Exp. Med. Biol., Vol. 184, pp. 271–80 (New York: Plenum Press)

    Google Scholar 

  224. Arakawa, K., Nakajima, H., Yoshida, T., Yasumuta, T., Aikawa, I., Ohmori, Y. and Oka, T. (1989). Inhibitory effect of reversible serine protease inhibitors on the activity of cytotoxic lymphocytes-T. Transplant. Proc., 21, 1152–3

    CAS  PubMed  Google Scholar 

  225. Brogan, M. and Targan, S. (1986). Evidence for involvement of serine proteases in the late stages of the natural killer cell lytic reaction. Cell Immunol., 103, 426–33

    Article  CAS  PubMed  Google Scholar 

  226. Podack, E. R. and Königsberg, P. J. (1984). Cytolytic T cell granules. Isolation, structural, biochemical and functional characterization. J. Exp. Med., 160, 695–710

    Article  CAS  PubMed  Google Scholar 

  227. Utsunomiya, N. and Nakanishi, M. (1986). A serine protease triggers the initial step of transmembrane signalling in cytotoxic T cells. J. Biol. Chem., 261, 16514–17

    CAS  PubMed  Google Scholar 

  228. Tokes, Z. A. (1981). Cell surface-associated protease activity in lymphocyte interactions. In Steinberg, C. M. and Lefkovits, I. (eds), Immune Systems, Vol. 2, pp. 239–48 (Basel: Karger)

    Google Scholar 

  229. Simon, M. M., Simon, H. G., Fruth, U., Epplen, J., Müller-Hermelink, H. K. and Kramer, M. D. (1987). Cloned cytolytic T-effector cells and their malignant variants produce an extracellular matrix degrading trypsin-like serine proteinase. Immunology, 60, 219–30

    CAS  PubMed  Google Scholar 

  230. Simon, M. M., Prester, M., Nerz, G., Kramer, M. D. and Fruth, U. (1988). Release of biologically active fragments from human plasma-fibronectin by murine T-cell-specific proteinase-1 (TSP-1). Biol. Chem. Hoppe-Seyler, 369(Suppl.), 107–12

    CAS  PubMed  Google Scholar 

  231. Munger, W. E, Berrebi, G. A. and Henkart, P. A. (1988). Possible involvement of CTL granule proteases in target cell DNA breakdown. Immunol. Rev., 103, 99–100

    Article  CAS  PubMed  Google Scholar 

  232. Bata, J., Martin, J. P. and Revillard, J. P. (1981). Cell surface protease activity of human lymphocytes; its inhibition by ai-antitrypsin. Experientia, 37, 518–19

    Article  CAS  PubMed  Google Scholar 

  233. Pierart, M. E., Najdovski, T., Appleboom, T. E. and Deschodt-Lanckman, M. M. (1988). Effect of human endopeptidase 24.11 (enkephalinase) in IL-1 induced thymocyte proliferation activity. J. Immunol., 140, 3808–11

    CAS  PubMed  Google Scholar 

  234. Yaso, S., Yokono, K., Hari, J., Yonezawa, K., Shii, K. and Baba, S. (1987). Possible role of cell surface insulin degrading enzyme in cultured human lymphocytes. Diabetologia, 30, 27–32

    Article  CAS  PubMed  Google Scholar 

  235. Kammer, G. M., Sapolsky, A. I. and Malemud, C. J. (1985). Secretion of an articular cartilage proteoglycan-degrading enzyme activity by murine lymphocytes-T in vitro. J. Clin. Invest., 76, 395–402

    Article  CAS  PubMed  Google Scholar 

  236. Oronsky, A. L. and Perper, R. J. (1975). Connective tissue-degrading enzymes of human leukocytes. Ann. N.Y. Acad. Sci., 256, 233–53

    Article  CAS  PubMed  Google Scholar 

  237. Simpson, J. W., Mackler, B. F., O’Neill, P. A., Mailman, M. L., Adams, S. and Harris, J. (1978). Collagenase production by human peripheral-blood mononuclear cells. J. Dent. Res., 57, 264

    Google Scholar 

  238. Govindarajan, K. R., Offner, H., Clausen, J., Fog, T. and Hyllested, K. (1974). The lymphocytic cathepsin B-1 and D activities in multiple sclerosis. J. Neurol., 23, 81–7

    CAS  Google Scholar 

  239. Grayzel, A. I., Hatcher, V. B. and Lazarus, G. S. (1976). Protease activity of normal and PHA (phytohemagglutinin) stimulated human lymphocytes. Cell. Immunol., 18, 210–19

    Article  Google Scholar 

  240. Yago, N. and Bowers, W. E. (1975). Unique cathepsin D-type proteases in rat thoracic duct lymphocytes and in rat lymphoid tissues. J. Biol. Chem., 250, 4749–54

    CAS  PubMed  Google Scholar 

  241. Langner, J., Kirschke, H. and Neumann, V. (1983). Cysteine proteinases in peripheral blood lymphocytes (PBL). Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg. Math: Naturwiss. Reihe, 32, 23–25

    CAS  Google Scholar 

  242. Kominami, E., Stukahara, T., Bando, Y. and Katunuma, N. (1985). Distribution of cathepsin B and H in rat tissues and peripheral blood cells. J. Biochem., 98, 87–94

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Woessner, J.F. (1992). Role of cellular proteinases and their protein inhibitors in inflammation. In: Whicher, J.T., Evans, S.W. (eds) Biochemistry of Inflammation. Immunology and Medicine Series, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2996-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2996-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5332-7

  • Online ISBN: 978-94-011-2996-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics