Advertisement

In situ hybridization for molecular cytogenetics

  • A. K. Raap
  • C. J. Cornelisse
Chapter
  • 32 Downloads

Abstract

After the biochemical description of the principles of nucleic acid hybridization in the sixties, three groups reported independently in 1969–1970 its application for the microscopic detection of specific nucleic acid sequences (Pardue and Gall, 1969; John et al., 1969; Buongiorno-Nordelli and Amaldi, 1970). In contrast to the first microscopic work done with fluorescent antibody probes, the labels were radioisotopes, the detection of which was accomplished by micro-autoradiography. The disadvantages inherent to the use of radioisotopes (poor topological resolution, environmental and health hazards, complex multiple sequence detection) prompted several groups to develop non-isotopic nucleic acid detection techniques.

Keywords

Interphase Nucleus Restriction Fragment Length Polymorphism Molecular Cytogenetic Numerical Chromosome Aberration Interphase Cytogenetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnoldus EPJ, Peters ACB, Bots GTAM, Raap AK and Van der Ploeg M (1989) Somatic pairing of chromosome 1 centromeres in interphase nuclei of human cerebellum. Hum. Genet. 83: 231–234.PubMedCrossRefGoogle Scholar
  2. Arnoldus EPJ, Wiegant J, Noordermeer IA, Wessels JW, Beverstock GC, Grosveld GC, Van der Ploeg M and Raap AK (1990) Detection of the Philadelphia chromosome in interphase nuclei. Cytogenet. Cell Genet. 54:(3-4): 108–111.CrossRefGoogle Scholar
  3. Arnoldus EPJ, Noordermeer IA, Peters ACB, Voormolen JHC, Bots GTAM, Raap AK and Van der Ploeg M (1991) Interphase cytogenetics of brain tumors. Genes, Chromosomes and Cancers. In press.Google Scholar
  4. Arnoldus EPJ, Noordermeer IA, Peters ACB, Raap AK and Van der Ploeg M (1990) Interphase cytogenetics reveals somatic pairingof chromosome 17 centromeres in normal human brain, but no trisomy 7 or sex-chromosome loss. Cytogenet. Cell Genet. In press.Google Scholar
  5. Bauman JGJ, Wiegant J, Borst P and Van Duijn P (1980) A new method for fluorescence microscopical localization of specific DNA sequences by in situ hybridization of fluorochrome labeled RNA. Exp. Cell Res. 138: 485–490.CrossRefGoogle Scholar
  6. Bauman JGJ, Wiegant J and Van Duijn P (1981) Cytochemical hybridization with fluorochrome labeled RNA III. Increased sensitivity by the use of anti-fluorescein antibodies. Histochemistry 73: 181–193.Google Scholar
  7. Bhatt B, Burns J, Flannery D and McGee JO’D (1988) Direct visualization of single copy genes on banded metaphase chromosomes by non-isotopic in situ hybridization. Nuc. Acids Res. 16: 3951–3961.CrossRefGoogle Scholar
  8. Brigati DJ, Myerson D, Leary JJ, Spalholz B, Travis S, Fong CK, Hsiung GD and Ward DC (1982) Detection of viral genomes in cultured cells and paraffin embedded tissue sections using biotin labelled probes. Virology 126: 32–50.CrossRefGoogle Scholar
  9. Buongiorno-Nordelli N and Amaldi F (1969) Autoradiographic detection of molecular hybrids between rRNA and DNA in tissue sections. Nature 2254: 946–947.Google Scholar
  10. Cherif D, Bernard O and Berger R (1989) Detection of single-copy genes by non-isotopic in situ hybridization on human chromosomes. Hum. Genet. 81: 358–362.PubMedCrossRefGoogle Scholar
  11. Cherif D, Julier C, Delattre O, Derre J, Lathrop GM and Berger R (1990) Simultaneous localization of cosmids and chromosome R-banding by fluorescence microscopy: application to regional mapping of human chromosome 11. Proc. Natl. Acad. Sci. USA 87: 6639–66438.PubMedCrossRefGoogle Scholar
  12. Cornelisse CJ and Tanke HJ (1990) Flow Cytometry. In: Comprehensive Cytopathology. (Bibbo M ed), Saunders, In Press.Google Scholar
  13. Coulton G (1990) Non-radioisotopic labels for in situ hybridization histochemistry: a histochemists view. In: In Situ Hybridization: Application to Developmental Biology and Medicine. (Harris N and Wilkinson DG eds.), pp. 1–32, Cambridge University Press.Google Scholar
  14. Cremer T, Landegent JE, Bruckner A, Scholl HP, Schardin M, Hager HD, Devilee P, Pearson P and Van der Ploeg M (1986) Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNAs with radioactive and non-radioactive in situ hybridization techniques: diagnosis of trisomy 18 with probe L1.84. Hum. Genet. 74: 346–352.PubMedCrossRefGoogle Scholar
  15. Dauwerse JG, Kievits T, Beverstock GC, Van der Keur D, Smit E, Wessels HW, Hagemeijer A, Pearson PL, Van Ommen GJB and Breuning MH (1990) Rapid detection of chromosome 16 inversion in acute nonlymphocytic leukemia, subtype M4: regional localization of the breakpoint in 16p. Cytogenet. Cell Genet. 53: 126–12.PubMedCrossRefGoogle Scholar
  16. Devilee P, Thierry RF, Kolluri R, Hopman AHN, Willard HF, MH Pearson PL and Cornelisse CJ (1988) Detection of chromosome aneuploidy in interphase nuclei from human primary breast tumours using chromosome specific repetitive DNA probes. Cancer Res. 48: 5825–5830.PubMedGoogle Scholar
  17. Dirks RW, Raap AK, Van Minnen J, Vreugdenhil E, Smit AB and Van der Ploeg M (1989) Detection of mRNA molecules coding for neuropeptide hormones of the pond snail Lymnaea stagnalis by radioactive and non-radioactive in situ hybridization: a model study for mRNA detection. J. Histochem. Cytochem. 37: 7–14.PubMedCrossRefGoogle Scholar
  18. Dirks RW, Van Gijlswijk RPM, Tullis RH, Smit AB, Van Minnen J, Van der Ploeg M and Raap AK (1990) Simultaneous detection of different mRNA sequences coding for neuropeptide hormones by double in situ hybridization using FITC-and biotin-labeled oligonucleotides. J. Histochem. Cytochem. 38: 467–473.PubMedCrossRefGoogle Scholar
  19. Dale RMK, Livingstone DC and Ward DC (1973) The synthesis and enzymatical polymerization of nucleotides containing mercury: potential tools for nucleic acid sequencing and structural analysis. Proc. Natl. Acad. Sci. USA 70: 2238–2242.PubMedCrossRefGoogle Scholar
  20. Fan Y, Davis LM and Shows TB (1990) Mapping small DNA sequences by fluorescence in situ hybridization directly on banded metaphase chromosomes. Proc. Natl. Acad. Sci. USA 87: 6223–6227.PubMedCrossRefGoogle Scholar
  21. Forster AC, Mclnnes JL, Skingle DC and Symons RH (1985) Non-radioactive hybridization probes prepared by the chemical labeling of DNA and RNA with a novel reagent: photobiotin. Nuc. Acids Res. 13: 745–761.CrossRefGoogle Scholar
  22. Heim S, Mitelman F (1987) In: Cancer Cytogenetics, Alan R. Liss Inc, New York.Google Scholar
  23. Hopman AHN, Wiegant J, Tesser GI and Van Duijn P (1986) A non-radioactive in situ hybridization method based on mercuratednucleic acid probes and sulfydryl hapten ligands. Nuc. Acids Res. 14: 6471–6488.CrossRefGoogle Scholar
  24. Hopman AHN, Poddighe P, Smeets AWGB, Moesker O, Beck JLM, Vooijs GP and Ramaekers FCS (1989) Detection of numerical chromosome aberrations in bladder cancer by in situ hybridization. Am. J. Pathol. 135: 1105–1117.PubMedGoogle Scholar
  25. John H, Birnstiel M and Jones K (1969) RNA:DNA hybrids at the cytological level. Nature 223: 582–587.PubMedCrossRefGoogle Scholar
  26. Keller GH, Huang DP and Marak MM (1989) Labeling of DNA probes with a photoactivatable hapten. Anal. Biochem. 177: 392.PubMedCrossRefGoogle Scholar
  27. Kibbelaar RE, Van Kamp H, Dreef EJ, Wesseles JW, Beverstock GC, Raap K, Fibbe WE, den Ottolander GJ and Kluin PhM (1990) Detection of trisomy 8 in hematological disorders by in situ hybridization. Cytogenet. Cell Genet, in press.Google Scholar
  28. Kievits T, Dauwerse JG, Wiegant J, Devilee P, Breuning MH, Cornelisse CJ, Van Ommen GJB and Pearson PL (1990) Rapid subchromosomal localization of cosmids by non-radioactive in situ hybridization. Cytogenet. Cell Genet. 53: 134–136.PubMedCrossRefGoogle Scholar
  29. Kitigawa Y and Stollar BD (1982) Comparison of poly(A).poly(dT) and poly(I).poly(dC) as immunogens for the induction of anti-bodies to DNA:RNA hybrids. Molecular Immunol. 19: 413–420.Google Scholar
  30. Landegent JE, Jansen in de Wal N, Baan RA, Hoeijmakers JHJ and Van der Ploeg M (1984) Acetylaminofluorene-modified probes for the indirect hybridocytochemical detection of specific nucleic acid sequences. Exp. Cell Res. 153: 61–72.Google Scholar
  31. Landegent JE, Jansen in de Wal N, Van Ommen GJB, Baas F, De Vijlder JJM, Van Duijn P and Van der Ploeg M (1985) Chromosomal localization of a unique gene by non-radioactive in situ hybridization. Nature 317: 175–177.Google Scholar
  32. Landegent JE, Jansen in de Wal N, Dirks RW, Baas F and Van der Ploeg M (1987) Use of whole cosmid cloned genomic sequences for chromosomal localization by nonradioactive in situ hybridization. Hum. Genet. 77: 366–370.Google Scholar
  33. Langer PR, Waldrop AA and Ward DC (1981) Enzymatic synthesis of biotin labelled polynucleotides: novel nucleic acid affinity probes. Proc. Natl. Acad. Sci. USA 78: 6633–6637.PubMedCrossRefGoogle Scholar
  34. Lawrence JB, Villnave CA and Singer RH (1988) Sensitive high resolution chromatin and chromosome mapping in situ: presence and orientation of two closely integrated copies of EBV in a lymphoma line. Cell 52: 51–61.PubMedCrossRefGoogle Scholar
  35. Lawrence JB, Singer RH and Marselle LM (1989) Highly localised tracks of specific transcripts within interphase nuclei visualized by in situ hybridization. Cell 57: 493–502.PubMedCrossRefGoogle Scholar
  36. Lawrence JB, Singer RH and McNeil JA (1990) Interphase and metaphase resolution of different distances within the human dystrophin gene. Science 249: 928–931.PubMedCrossRefGoogle Scholar
  37. Lichter P, Tang CC, Call K, Hermanson G, Evans G, Housman D and Ward DC (1990) High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 247: 64.PubMedCrossRefGoogle Scholar
  38. Nederlof PM, Robinson D, Abuknesha R, Wiegant J, Hopman AHN, Tanke HJ and Raap AK (1989a) Three colour fluoresence in situ hybridization for the simultaneous detection of multiple nucleic acid sequences. Cytometry 10: 20–27.PubMedCrossRefGoogle Scholar
  39. Nederlof PM, Van der Flier S, Raap AK, Tanke HJ, Van der Ploeg M, Kornips F and Geraedts JPM (1989b) Detection of chromosome aberrations in interphase tumour nuclei by non-radioactive in situ hybridization. Cancer Genet. Cytogenet. 42: 87–98.PubMedCrossRefGoogle Scholar
  40. Nederlof PM, van der Flier S, Wiegant J, Raap AK, Tanke HJ, Ploem JS and Van der Ploeg M (1990) Multiple fluorescence in situ hybridization. Cytometry 11: 126–131.Google Scholar
  41. Pardue ML and Gall JG (1969) Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc. Natl. Acad. Sci. USA 64: 600–604.PubMedCrossRefGoogle Scholar
  42. Pinkel D, Straume T and Gray JW (1986) Cytogenetic analysis using quantitative, high sensitivity fluorescence hybridization. Proc. Natl. Acad. Sci. 85: 2934–2938.CrossRefGoogle Scholar
  43. Raap AK, Marijnen JGJ and Van der Ploeg M (1984) Anti DNA.RNAsera. Specificity tests and application in quantitative in situ hybridization. Histochemistry 81: 517–520.Google Scholar
  44. Raap AK, Van der Ploeg M, Hopman AHN, Landegent JE and Van Duijn P (1987) Localization of DNA sequences by non-radioactive in situ hybridization. In: Clinical Cytometry and Histometry, pp. 221–226, Academic Press.Google Scholar
  45. Raap AK, Hopman AHN and Van der Ploeg M (1989) Hapten labeling of nucleic acids probes for DNA in situ hybridization. In: Techniques in Immunocytochemistry, Vol IV. (Bullock G and Petruzs P eds.), pp. 167–198, Academic Press.Google Scholar
  46. Raap AK, Dirks RW, Jiwa NM, Nederlof PM and Van der Ploeg M (1990) In situ hybridization with hapten-modified DNA probes. In: Modern Pathology of AIDS and other Retroviral Infections. (Racz P, Haase AT, Gluckman JC, eds), pp. 17–28, Karger, Basel.Google Scholar
  47. Rudkin GT and Stollar BD (1977) High resolution detection of DNA-RNA hybrids in situ by indirect immunofluorescence. Nature 265: 472–473.PubMedCrossRefGoogle Scholar
  48. Smit VTHBM, Wessels JW, Mollevanger P, Schrier PI, Raap AK, Beverstock GC and Cornelisse CJ (1990) Combined GTG-banding and non-radioactive in situ hybridization improves characterization of complex karyotypes. Cytogenet. Cell Genet, in press.Google Scholar
  49. Schmitz H and Kampa D (1979) Amplified direct immunofluorescence (ADMI) for detection of Epstein-Barr virus nuclear antigen. J. Immunol. Meth. 26: 173–174.CrossRefGoogle Scholar
  50. Sverdlov ED, Monastyrskaya GS, Guskova LI, Levitan TL and Scheichenko VI and Budowski El (1974) Modification of cytidine residues with a bisulfite-omethylhydroxylamine mixture. Biochim. Biophys. Acta 340: 153–165.CrossRefGoogle Scholar
  51. Tanke HJ (1989) Does light microscopy have a future? J. Microsc. 155: 405–418.CrossRefGoogle Scholar
  52. Tchen P, Fuchs RPP, Sage E and Leng M (1984) Chemically modified nucleic acids as immunodetectable probes in hybridization experiments. Proc. Natl. Acad. Sci. USA 81: 3466–3470.PubMedCrossRefGoogle Scholar
  53. Teyssier JR (1989) The chromosomal analysis of human solid tumours: a triple challenge. Cancer Genet. Cytogenet. 37: 103–125.PubMedCrossRefGoogle Scholar
  54. Trask B, Pinkel JD and Van den Engh G (1989) The proximity of DNA sequences in interphase cell nuclei is correlated to genomic distance and permits ordering of cosmids spanning 250 kilobase pairs. Genomics 5: 710–717.PubMedCrossRefGoogle Scholar
  55. Van Prooijen-Knegt AC, Van Hoek JFM, Bauman JGJ, Van Duijn P, Wool IG and Van der Ploeg M (1982) In situ hybridization of DNA sequences in human metaphase chromosomes visualized by an indirect fluorescent immunocytochemical procedure. Exp. Cell Res. 141: 397–407.PubMedCrossRefGoogle Scholar
  56. Vindelov LL, Christensen IJ, Jensen G and Nissen NI (1983) Limits of detection of nuclear DNA abnormalities by flow cytometric DNA analysis. Results obtained by a set of methods for sample storage, staining and internal standardization. Cytometry 3: 332–339.Google Scholar
  57. Viscidi RP, Conelly CJ and Yolken RH (1986) Novel chemical method for the preparation of nucleic acids for non-isotopic hybridization. J. Clinic. Microbiol. 23: 311–317.Google Scholar
  58. Wiegant J, Galjart N, Raap AK and d’Azzo (1992) The gene encoding human protective protein is on chromosome 20. Genomics: in press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • A. K. Raap
    • 1
  • C. J. Cornelisse
    • 2
  1. 1.Department of Cytochemistry and CytometryMedical Faculty, Leiden UniversityLeidenThe Netherlands
  2. 2.Department of PathologyMedical Faculty, Leiden UniversityLeidenThe Netherlands

Personalised recommendations