Skip to main content

Solving Coupled Problems Involving Conduction, Convection and Thermal Radiation

  • Chapter
Boundary Element Methods in Heat Transfer
  • 390 Accesses

Abstract

Heat transfer problems in industry are usually of a very complex nature, frequently involving different energy-exchange mechanisms. The most common configuration of an industrial plant is the concave wall forming an enclosure (e.g. industrial furnace, combustion chamber etc.). Within the enclosure, heat is generated due to the combustion process, or alternatively due to electric current flow, or others. The purpose of this heat generation process is to melt metal ore and heating slabs for rolling systems and many others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.M. Sparrow and R.D. Cess, Radiation Heat Transfer, McGraw Hill, NY, 1978.

    Google Scholar 

  2. R. Siegel and J.R. Howell, Thermal Radiation Heat Transfer, McGraw Hill, NY, 1981, 2nd ed.

    Google Scholar 

  3. H.C. Hottel and A.F. Sarofim, Radiative Transfer, McGraw Hill, NY, 1967.

    Google Scholar 

  4. H.A. Vercammen and G.F. Froment, An improved Zone Method using Monte Carlo techniques for the simulation of radiation in industrial furnaces, Int. J. Heat Mass Transfer, vol. 23, No 3, 1980, pp. 329–337.

    Article  Google Scholar 

  5. W.E. Mason, Finite Element Analysis of coupled heat conduction and enclosure radiation. Proc. of Int. ConL on Numerical Methods in Thermal Problems, Swansea, U.K., 1979.

    Google Scholar 

  6. L.M. Nice, Application of Finite Elements to he at transfer in participating medium, Proc. of the Second National Symp. on Numerical Properties and Methodologies in Heat Transfer, (ed. T.M. Shih), Hemisphere Publ. Co., Maryland 1981, USA, pp. 497–517.

    Google Scholar 

  7. J.H. Chin and D.R. Frank, Engineering Finite Element analysis of conduction, convection and radiation, Numerical Methods in Heat Transfer (ed. R.W. Lewis and K. Morgan), vol. 3, John Wiley & Sons, 1985, pp. 215–231.

    Google Scholar 

  8. D.W. Larson, Enclosed radiation and turbulent natural convection induced by a fire, Numerical Methods in Heat Transfer (ed. R.W. Lewis, K. Morgan and O.C. Zienkiewicz) John Wiley & Sons, 1981, pp. 467–489.

    Google Scholar 

  9. M.M. Razzaque, J.R. Howell and D.E. Klein, Coupled radiative and conductive heat transfer in two-dimensional rectangular enclosure with gray participating media using Finite Elements, J. Heat Transfer, vol. 106, 1984, pp. 613–619.

    Article  Google Scholar 

  10. J. Nadziakiewicz and Z. Rudnicki, Mathematical Model of heat transfer in the enclosure of walking beam furnace, Gas Wärme International, No 5, 1981.

    Google Scholar 

  11. C.H. Ho and M.N. Ozisik, Combined conduction and radiation in two-dimensional rectangular enclosure, Numerical Heat Transfer, vol. 13, 1988, pp. 229–239.

    Article  ADS  Google Scholar 

  12. D.K. Edwards, Numerical methods in radiation heat transfer, Proc. of the Second National Symp. on Numerical Properties and Methodologies in Heat Transfer, (ed. T.M. Shih), Hemisphere Publ. Co., Maryland 1981, USA, pp. 479–497.

    Google Scholar 

  13. A.J. Nowak and Z. Rudnicki, Anwendung der Hellikentsmethode Zur Berechnung der Strahlungswärmeüberteagung in Industrieöfen. Proc. Intern. Conference 5 Fachtagung Termishen Apparatebau, Magdeburg, GDR, 1986.

    Google Scholar 

  14. A.J. Nowak and Z. Rudnicki, Berechnung der Strahlungswärmeüberteagung nach der Hellikentsmethode. Gas Wärme International, Band 37, 1988, Heft 3, pp. 162–166, (in German).

    Google Scholar 

  15. R. Bialecki and A.J. Nowak, Boundary value problems for nonlinear material and nonlinear boundary conditions. Applied Mathematical Modelling, vol. 5, 1981, pp. 417–421.

    Article  ADS  MATH  Google Scholar 

  16. J.P.S. Azevedo and L.C. Wrobel, Nonlinear heat conduction in composite bodies. A boundary Elements formulation. Intern. J. Numer. Methods Eng., vol. 26, No 1, 1988, pp. 19–38.

    Article  MATH  Google Scholar 

  17. R. Bialecki, R. Nahlik and A.J. Nowak, Temperature field in a radiating body washed on by a transparent gas. Proc. Int. Symp. on Heat and Mass Transfer, Jablonna n. Warsaw, 1983, pp. 26–31, (in Polish).

    Google Scholar 

  18. R. Bialecki, R. Nahlik and A.J. Nowak, Temperature field in a solid forming an enclosure where heat transfer by convection and radiation is taking place. Proc. of the First National Heat Transfer Conference, Leeds, U.K., Pergamon Press, London, 1984, pp. 989–1000.

    Google Scholar 

  19. C.A. Brebbia, J.C.F. Telles and L.C. Wrobel, Boundary Element Techniques: Theory and Applications in Engineering, Springer-Verlag, Berlin, 1984.

    MATH  Google Scholar 

  20. C.A. Brebbia and J. Dominguez, Boundary Elements-An Introductory Course, Comp. Mech. Publications, Mc Graw-Hill Book Co., 1988.

    Google Scholar 

  21. J. Encarnacao and E.G. Schlechtendahl, Computer Aided Design, Springer-Verlag, 1983.

    MATH  Google Scholar 

  22. P.H.L. Groenenboom, C.A. Brebbia and J.J. De Jong, New developments in engineering applications of boundary elements in the transient wave propagation, Engineering Analysis, vol. 3, 1987, pp.201–207.

    Article  Google Scholar 

  23. A. Björck and G. Dahlquist, Numerical Methods, Prentice-Hall, 1974.

    Google Scholar 

  24. R. Bialecki, Applying BEM to calculations of temperature fields in bodies containing radiating enclosures, Proc. 7th Intern. BEM Conference (C.A. Brebbia and G. Maier editors), Corno, Italy, Springer-Verlag, Berlin and New York, 1985, vol. 1, pp 2–35 to 2–49.

    Google Scholar 

  25. R. Bialecki, A.J. Nowak, R. Nahlik, Applying Green’s function for the semi-plane with boundary conditions of the third kind in BEM, Proc. 7th Intern. BEM Conference (C.A. Brebbia and G. Maier editors), Corno, Italy, Springer-Verlag, Berlin and New York, 1985, vol. 1, pp 2–99 to 2–105.

    Google Scholar 

  26. R. Bialecki, Radiative heat transfer in cavities. BEM formulation, Proc. of the 10th BEM Conference, Southampton, vol 2, Heat Transfer Fluid Flow and Electric Applications (C.A. Brebbia-Editor), Springer-Verlag, Berlin, 1988, pp. 246–256.

    Google Scholar 

  27. M. Pivovonsky and M.R. Nagel, Tables of Blackbody Radiation Functions, The Macmillan Company, NY, 1961.

    Google Scholar 

  28. J.A. Wiebelt, Engineering Radiation Heat Transfer, Holt, Rinehart and Winston, Inc., NY, 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Computational Mechanics Publications

About this chapter

Cite this chapter

Nowak, A.J. (1992). Solving Coupled Problems Involving Conduction, Convection and Thermal Radiation. In: Wrobel, L.C., Brebbia, C.A. (eds) Boundary Element Methods in Heat Transfer. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2902-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2902-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-726-0

  • Online ISBN: 978-94-011-2902-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics