Skip to main content

Chemical Intercellular Signalling Mechanisms in the Nervous System of the Nematode Ascaris suum: Potential Sites of Actions of New Generations of Anthelmintic Drugs

  • Chapter
Neurotox ’91

Abstract

The existence of genetic drug resistance to existing anthelmintics presents a serious challenge, and emphasizes the urgent need for new generations of drugs. Fortunately, the potential for developing new drugs, acting on so far untargeted systems in parasites, seems high.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stretton, A. O. W., Fishpool, R. M., Southgate, E., Donmoyer, J. E., Walrond, J. P., Moses, J. E. R. & Kass, I. S., Structure and physiological activity of the motoneurons of the nematode Ascaris. Proceedings of the National Academy of Sciences, USA, 75 (1978) 3493–3497.

    Article  CAS  Google Scholar 

  2. Angstadt, J. D., Donmoyer, J. E. & Stretton, A. O. W., Retro vesicular ganglion of the nematode Ascaris. J. Comp. Neurol, 284 (1989) 374–388.

    Article  CAS  Google Scholar 

  3. Davis, R. E. & Stretton, A. O. W., Passive membrane properties of motoneurons and their role in long-distance signalling in the nematode Ascaris. J. Neurosci., 9 (1989) 403–414.

    CAS  Google Scholar 

  4. Jarman, M., Electrical activity in the muscle cells of Ascaris lumbricoides. Nature, London, 184 (1959) 1244.

    Google Scholar 

  5. Davis, R. E. & Stretton, A. O. W., Signalling properties of Ascaris motoneurons: graded active responses, graded synaptic transmission, and tonic transmitter release. J. Neurosci., 9 (1989) 415–425.

    PubMed  CAS  Google Scholar 

  6. Davis, R. E. & Stretton, A. O. W., Extracellular recording from the motornervous system of the nematode Ascaris. Soc. Neurosci. Abstr., 16 (1990) 726.

    Google Scholar 

  7. Martin, R. J., y-aminobutyric acid- and piperazine-activated single channel currents from Ascaris suum body muscle. British Journal of Pharmacology, 84 (1985) 445–461.

    PubMed  CAS  Google Scholar 

  8. Johnson, C. D. & Stretton, A. O. W., GABA-immunoreactivity in inhibitory motor neurons of the nematode Ascaris. J. Neurosci., 7 (1987) 223–235.

    CAS  Google Scholar 

  9. Sithigorngul, P., Stretton, A. O. W. & Cowden, C, Neuropeptide diversity in Ascaris: an immunocytochemical study. J. Comp. Neurol., 294 (1990) 362–376.

    Article  PubMed  CAS  Google Scholar 

  10. Davenport, T. R. B., Lee, D. L. & Isaac, R. E., Immunocytochemical demonstration of a neuropeptide in Ascaris suum (Nematoda) using antiserum to FMRFamide. Parasitology, 97 (1988) 81–88.

    Article  PubMed  CAS  Google Scholar 

  11. Johnson, C. D. & Stretton, A. O. W., Localization of choline acetyltransferase within identified motoneurons of the nematode Ascaris. J. Neurosci., 5 (1985) 1984–1992.

    CAS  Google Scholar 

  12. Angstadt, J. D. & Stretton, A. O. W., Rhythmic activity in inhibitory motor-neurons in the nematode Ascaris. J. Comp. Physiol. A., 166 (1989) 165–177.

    CAS  Google Scholar 

  13. Johnson, C. D. & Stretton, A. O. W., Neural control of locomotion in Ascaris: anatomy, electrophysiology and biochemistry. In Nematodes as Biological Models, Vol. 1. Academic Press, New York, pp. 159–195.

    Google Scholar 

  14. Stretton, A. O. W., Davis, R. E., Angstadt, J. D., Donmoyer, J. E. & Johnson, C. D., Neural control of behaviour in Ascaris. Trends Neurosci., 8 (1985) 294–300.

    Article  Google Scholar 

  15. Harrow, I. D. & Gration, K. A. F., Mode of action of the anthelmintics morantel, pyrantel and levamisole on the muscle cell membrane of the nematode Ascaris suum. Pesticide Science, 16 (1985) 662–672.

    Article  CAS  Google Scholar 

  16. Colquhoun, L., Holden-Dye, L. & Walker, R. J., The pharmacology of cholino-ceptors on the somatic muscle cells of the parasitic nematode Ascaris suum. British Journal of Pharmacology, 99 (1990) 253 P.

    Google Scholar 

  17. Martin, R. J., Pennington, A. J., Buittox, A. H., Robertson, S. & Kusel, J. R., The physiology and pharmacology of neuromuscular transmission in the nematode parasite, Ascaris suum. Parasitology, 102 (1991) 541–558.

    Google Scholar 

  18. Segerberg, M. A. & Stretton, A. O. W., Two pharmacologically distinct classes of cholinergic receptors in nematodes. Soc. Neurosci. Abstr., 12 (1986) 1022.

    Google Scholar 

  19. del Castillo, J., de Mello, W. C. & Morales, T., Inhibitory action of γ-aminobutyric acid (GABA) on Ascaris muscle. Experientia, 20 (1964) 141–143.

    Article  PubMed  Google Scholar 

  20. del Castillo, J., de Mello, W. C. & Morales, T., Mechanism of the paralysing action of piperazine on Ascaris muscle. British Journal of Pharmacology, 22 (1964) 463–477.

    Google Scholar 

  21. Martin, R. J., Electrophysiological effects of piperazine and diethylcarbamazine on Ascaris suum somatic muscle. British Journal of Pharmacology, 77 (1982) 255–265.

    PubMed  CAS  Google Scholar 

  22. Guastella, J., Johnson, C. D. & Stretton, A. O. W., GABA-immunoreactive neurons in the nematode Ascaris. J. Comp. Neurol, 307 (1991) 584–608.

    Article  CAS  Google Scholar 

  23. Guastella, J. & Stretton, A. O. W., Distribution of 3H-GABA uptake sites in the nematode Ascaris. J. Comp. Neurol, 307 (1991) 598–608.

    Article  CAS  Google Scholar 

  24. Holden-Dye, L., Krogsgaard-Larsen, P., Nielsen, L. & Walker, R. J., GABA receptors on the somatic muscle cells of the parasitic nematode, Ascaris suum: stereoselectivity indicates similarity to a GABAa- type agonist recognition site. British Journal of Pharmacology, 98 (1989) 841–850.

    PubMed  CAS  Google Scholar 

  25. Duittoz, A. H., & Martin, R. J., Effects of the arylaminopyridazine-GABA receptor: the relative potency of the antagonists in Ascaris is different to that at vertebrate GABAa receptors. Comp. Biochem. Physiol, 98C (1991) 417–422.

    Google Scholar 

  26. Donahue, M. J., Yacoub, N. J., Michinoff, C. A., Masaracchia, R. A. & Harris, B. G., Serotonin (5-hydroxytryptamine): a possible regulator of glycogenosis in perfused muscle segments of Ascaris suum. Biophysics and Biochemical Research Communications, 101 (1981) 112–117.

    Article  CAS  Google Scholar 

  27. Martin, R. E., Chaudhuri, J. & Donahue, M. J., Serotonin (5-hydroxytryptamine) turnover in adult female Ascaris suum tissue. Comp. Biochem. Physiol, 91C (1988) 307–310.

    Article  CAS  Google Scholar 

  28. Stretton, A. O. W. & Johnson, C. D., GABA and 5HT immunoreactive neurons in Ascaris. Soc. Neurosci. Abstr., 11 (1985) 626.

    Google Scholar 

  29. Chaudhuri, J. & Donahue, M. J., Serotonin receptors in the tissues of adult Ascaris suum. Molec. Biochem. Parasitol., 35 (1989) 191–198.

    Article  CAS  Google Scholar 

  30. Buchanan, C. A. & Stretton, A. O. W., The effects of biogenic amines on Ascaris locomotion. Soc. Neurosci. Abst., 17 (1991).

    Google Scholar 

  31. Desai, C., Garriga, G., Mclntire, S. L. & Horvitz, H. R., A genetic pathway for the development of the Caenorhabditis elegans HSN motor neurons. Nature, 336 (1983) 293–294.

    Google Scholar 

  32. Sulston, J., Dew, M. & Brenner, S., Dopamine neurons in the nematode Caenorhabditis elegans. J. Comp. Neurol., 163 (1975) 215–244.

    Article  CAS  Google Scholar 

  33. Iversen, L. L., Neuropeptides—what next? Trends Neurosci., 6 (1983) 293–294.

    Article  Google Scholar 

  34. O'Shea, M. & Schaeffer, M., Neuropeptide function: the invertebrate contribution, Ann. Rev. Neurosci., 8 (1985) 171–198.

    Article  PubMed  Google Scholar 

  35. Sithigorngul, P., Cowden, C, Guastella, J. & Stretton, A. O. W., Generation of monoclonal antibodies against a nematode peptide extract: another approach for identifying unknown neuropeptides. J. Comp. Neurol, 284 (1989) 389–397.

    Article  PubMed  CAS  Google Scholar 

  36. Cowden, C., Stretton, A. O. W. & Davis, R. E., AF1, a sequenced bioactive neuropeptide isolated from the nematode Ascaris suum. Neuron, 2 (1989) 1465–1473.

    Article  CAS  Google Scholar 

  37. Cowden, C. & Stretton, A. O. W., AF2, a nematode neuropeptide. Soc. Neurosci. Abstr., 16 (1990) 305.

    Google Scholar 

  38. Marder, E., Calabrese, R. L., Nusbaum, M. P. & Trimmer, B. A., Distribution and partial characterization of FMRFamide-like peptides in the stomatogastric ganglion of the rock crab, Cancer borealis, and the spiny lobster, Panulirus interruptus. J. Comp. Neurol., 259 (1987) 150–163.

    Article  CAS  Google Scholar 

  39. Cowden, C. & Stretton, A. O. W., Structure and physiological activity of AF2, an endogenous FMRFamide-like peptide from Ascaris suum (in preparation).

    Google Scholar 

  40. Nachman, R. J., Holman, G. M., Haddon, W. F. & Ling, N., Leucosulfakinin, a sulfated insect neuropeptide with homology to gastrin and cholecystokinin. Science, 234 (1986) 71–73.

    Article  PubMed  CAS  Google Scholar 

  41. Nachman, R. J., Holman, G. M., Cooke, B. J., Haddon, W. F. & Ling, N., Leucosulfakinin-II, a blocked sulfated insect neuropeptide with homology to cholecystokinin and gastrin. Biochem. Biophys. Res. Commun., 140 (1986) 357–364.

    Article  PubMed  CAS  Google Scholar 

  42. Holman, G. M., Cook, B. J. & Nachman, R. J., Isolation, primary structure and synthesis of leucomyosuppressin, an insect neuropeptide that inhibits spontaneous contractions of the cockroach hindgut. Comp. Biochem. Physiol, 85C (1986) 329–333.

    Article  Google Scholar 

  43. Tatemoto, K. & Mutt, V., Isolation and characterization of the intestinal peptide porcine PHI (PHI-27), a new member of the glucagon-secretin family. Proc. Natl. Acad. Sci. USA, 78 (1981) 6603–6607.

    Article  PubMed  CAS  Google Scholar 

  44. Bloom, F. E., Identifying neuropeptides by gene cloning. Psychopharmacol. Bull., 22 (1986) 701–707.

    PubMed  CAS  Google Scholar 

  45. Nakanishi, S., Inoie, A., Kita, T., Nakamura, M., Chang, A. C., Cohen, S. N. & Numa, S., Nucleotide sequence of cloned cDNA for bovine corticotropin-B-lipotropin precursor. Nature, 278 (1979) 423–427.

    Article  PubMed  CAS  Google Scholar 

  46. Rosenfeld, M. G., Mermod, J. J., Amara, S. G., Swanson, L. W., Sawchenko, P. E., Rivier, J., Vale, W. W. & Evans, R. M., Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature, 304 (1983) 129–135.

    Article  PubMed  CAS  Google Scholar 

  47. Nambu, J. R., Taussig, R., Mahon, A. C. & Scheller, R. J., Gene isolation with cDNA probes from identified Aplysia neurons: Neuropeptide modulators of cardiovascular physiology. Cell, 35 (1983) 47–56.

    Article  PubMed  CAS  Google Scholar 

  48. Sithigorngul, P., Stretton, A. O. W. & Cowden, C., A versatile dot-ELISA method with femtomole sensitivity for detecting small peptides. J. Immunol. Methods, 141 (1991) 23–32.

    Article  PubMed  CAS  Google Scholar 

  49. White, J. G., Southgate, E., Thomson, J. N. & Brenner, S., The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. Roy. Soc. Lond. (Biol.), 314 (1986) 1–340.

    Article  Google Scholar 

  50. Mclntire, S. & Horvitz, H. R., Immunocytochemical reactivity of neurons in wildtype and mutant C. elegans to antisera against GABA, serotonin, and CCK. Soc. Neurosci. Abstr., 11 (1985) 920.

    Google Scholar 

  51. Getting, P. & Dekin, M. S., Tritonia swimming: a model system for integration within rhythmic motor systems. In Model Neural Networks and Behavior, ed. A. I. Selverston. Plenum, New York, 1985, pp. 3–20.

    Google Scholar 

  52. Harris-Warrick, R. M. & Marder, E., Modulation of neural networks for behavior. Ann. Rev. Neurosci., 14 (1991) 39–57.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 SCI

About this chapter

Cite this chapter

Stretton, A.O.W. (1992). Chemical Intercellular Signalling Mechanisms in the Nervous System of the Nematode Ascaris suum: Potential Sites of Actions of New Generations of Anthelmintic Drugs. In: Duce, I.R. (eds) Neurotox ’91. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2898-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2898-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-746-8

  • Online ISBN: 978-94-011-2898-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics