Skip to main content

Whey and Lactose Fermentation

  • Chapter
Whey and Lactose Processing

Abstract

Previous chapters in this book have provided the necessary information required to define what whey is and what the compositional characteristics of this by-product are. Furthermore, it has also been shown that proteins can be isolated from this process ‘waste’ stream by methods that vary in their degree of sophistication. While these reviews delineate many successes, the problem of whey disposal is essentially one of lactose disposal, i.e. if the major constitutent of the dry matter in whey (lactose) can be converted or degraded, there will be no ‘whey problem’ on this earth. Coton (1979) reported that a total of 3 465 000 t of lactose was available from cheese manufacture in 1977 in the world. Of this, Western Europe generated 1 455 000 t (42%), Eastern Europe 931 000 t (26.9%), North America 822000 t (23.7%), South America 122, 000 t (3.5%), Australia 75 000 t (2.2%), and 60 000 t (1.7%) was attributed to other countries. No statistics are available for the utilization of lactose either by country or by end-use. Therefore the statistics are best guess or theoretical yields of available lactose. Zadow (1984) points out that the global market for lactose is inelastic and therefore increased production of lactose would result in a drastic decrease in prices. This economic reason serves as the justification for seeking alternative uses for lactose. It has also been suggested that two terms, ‘deproteinized whey’ and ‘permeate’, currently used interchangeably

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amundson, C. H. (1967). Increasing protein content of whey. Am. Dairy Rev., 29(7), 22–3, 96–9.

    Google Scholar 

  • Atkin, C., Witter, L. D. & Ordal, Z. J, (1967). Continuous propagation of Trichosporon cutaneum in cheese whey. Appl. Microbiol., 115, 1339–44.

    Google Scholar 

  • Atkinson, B. & Mavituna, F. (1983). Biochemical Engineering and Biotechnology Handbook. Macmillan, London, pp. 890–931.

    Google Scholar 

  • Bahl, H., Andersch, W., Braun, K. & Gottschalk, G. (1982a). Effect of pH and butyrate concentration on the production of acetone and butanol by Clostridium acetobutylicum grown in continuous culture. Eur. J. Appl. Microbiol. Biotechnol., 14, 17–20.

    Article  Google Scholar 

  • Bahl, H., Andersch, W., & Gottschalk, G. (1982b). Continuous production of acetone and butanol by Clostridium acetobutylicum in a two stage phosphate limited chemostat. Eur. J. Appl. Microbiol. Biotechnol., 15, 201–5.

    Article  Google Scholar 

  • Barbosa, M. F. S., Silva, D. O., Pinherio, A. J. R., Guimaracs, W. V. & Borges, A. C. (1985). Production of beta-D-galactosidase from Kluyveromyces fragilis, grown in cheese whey. J. Dairy Sci., 68, 1618–23.

    Article  Google Scholar 

  • Bayer, K. (1983). Trace element supplementation of cheese whey for the production of feed yeast. J. Dairy Sci., 66, 214–20.

    Article  Google Scholar 

  • Bernstein, S., Tzeng, C. H. & Sisson, D. (1977). The commercial fermentation of cheese whey for the production of protein and/or alcohol. Biotechnol. Bioeng. Symp., (7), 1–9.

    Google Scholar 

  • Blakebrough, N. & Moresi, M. (1981). Modelling of the process yields of a whey fermentation. Eur. J. Appl. Microbiol. Biotechnol., 13, 1–9.

    Article  Google Scholar 

  • Blanchet, M. & Biju-Duval, F. (1969). Int. Dairy Fed. Seminar on Whey Processing and Utilization. Weihenstephan, GFR. (Cited by J. Meyrath and K. Bayer, 1979). Biomass from whey. Econ. Microbiol., 4, 207–69.

    Google Scholar 

  • Boeing, P. H. & Larsen, V. F. (1982). Anaerobic fluidized bed whey treatment. Biotechnol. Bioeng., 24, 2539–66.

    Article  Google Scholar 

  • Bradbury, F. R. & Dutton, B. G. (1972). Selling Chemicals in the Chemical Indus-try: Social and Economic Aspects. Butterworths, London, pp. 113–38.

    Google Scholar 

  • Charles, M. & Radjai, M. K. (1977). Xanthan gum from acid whey. ACS Symp. Ser., 43, 27–39.

    Article  Google Scholar 

  • Coton, S. G. (1979). The utilization of permeates from the ultrafiltration of whey and skim milk. Int. Dairy Federation, Geneva, Switzerland.

    Google Scholar 

  • Cox, G.C. & MacBean, R. D. (1977). Lactic acid production by Lactobacillus bulgaricus in supplemented whey ultrafiltrate. Aust. J. Dairy Technol., 32, 19–22.

    Google Scholar 

  • Delaney, R. A. M., Kennedy, R., & Walley, B. D. (1975). Composition of Saccharomyces fragilis biomass grown on lactose permeate. J. Sci. Food Agric., 26,1177–86.

    Article  Google Scholar 

  • Friend, B. A. & Shahani, K. M. (1979). Whey fermentation N.Z. J. Dairy Sci. Technol., 14,143–52.

    Google Scholar 

  • Gawel, J. & Kosikowski, F. V. (1978). Improving alcohol fermentation in concentrated ultrafiltration permeates of cottage cheese whey. J. Food Sci., 43, 1717–19.

    Article  Google Scholar 

  • Gottschalk, G. (1986). Bacterial Metabolism, 2nd edn. Springer-Verlag, New York.

    Book  Google Scholar 

  • Greenshields, R. & Rothman, H. (1986). Fermentation technology. In the Biotechnological Challenge, eds. S. Jacobsen, A. Jamison, & H. Rothman. Cambridge University Press, Cambridge, pp. 77–95.

    Google Scholar 

  • Hacking, A. J. (1986). Economic Aspects of Biotechnology. In Cambridge Studies in Biotechnology, 3. Cambridge University Press, Cambridge.

    Google Scholar 

  • Halter, G. A., Sewards, G. J. & Scott, P. H. (1983). Studies on anaerobic treatment process for a strong organic waste. In Int. Conf. Water Poll. Dev. Countries. Bangkok, Thailand, 1988. pp. 539–49.

    Google Scholar 

  • Harju, M., Heikonen, M. & Kreula, M. (1976). Nutrient supplementation of Swiss cheese whey for the production of feed yeast. Milchwissenschaft, 31, 530–4.

    Google Scholar 

  • Hickey, R. F. & Owens, R. W. (1981). Methane generation from high strength industrial wastes with anaerobic biological fluidized bed. Biotechnol. Bioeng. Symp., 11, 399–413.

    Google Scholar 

  • Hirose, Y. & Okada, H. (1978). Microbial production of amino acids. In Microbial Technology. Vol. I. Microbial Processes,eds H. J. Peppier & D. Perlman, Academic Press, New York, pp. 211–40.

    Google Scholar 

  • Hobman, P. G. (1984). Review of processes and products for utilization of lactose in deproteinated milk serum. J. Dairy Sci., 67, 2630–53.

    Article  Google Scholar 

  • Hossain, M., Brooks, J. D. & Maddox, I. S. (1983). Production of citric acid from whey permeate by fermentation using Aspergillus niger. N.Z. J. Dairy Sci. Technol., 18, 161–8.

    Google Scholar 

  • Janssens, J. H., Bernard, A. & Bailey, R. B. (1984). Ethanol from whey: Con-tinuous fermentation with cell recycle. Biotechnol. Bioeng., 26, 1–5.

    Article  Google Scholar 

  • Ko, Y. T. & Chipley, J. R. (1983). Microbial production of lysine and threonine from whey permeate. Appl. Environ. Microbiol. 45, 610–5.

    Google Scholar 

  • Kosaric, N. & Miyata, N. (1981). Growth of morel mushroom mycellium in cheese whey. J. Dairy Res., 48, 149–62.

    Article  Google Scholar 

  • Lane, A. G. (1977). Production of food yeast from whey ultrafiltrate by dialysis culture. J. Appl. Chem. Biotechnol., 27, 165–9.

    Article  Google Scholar 

  • Lembke, A., Moebus, O., Grasshoff, O. & Reuter, H., (1975). Sonderheft Berichte der Landwirtschaft, 192, 571. (Cited in J. Meyrath & K. Bayer (1979). Biomass from whey. Econ. Microbiol., 7, 207–69.)

    Google Scholar 

  • Litchfield, J. H. (1978). Microbial cells on your menu. Chemtech. 8, 218–63.

    Google Scholar 

  • Maddox, I. S. (1980). Production of n-butanol from whey filtrate using Clostridium acetobutylicum N.C.I.B. 2951. Biotechnol. Lett., 2, 493–8.

    Article  Google Scholar 

  • Maddox, I. S. & Richert, S. H. (1977). Production of gibberellic acid using a dairy waste as the basal medium. Appl. Environ. Microbial., 33, 201–2.

    Google Scholar 

  • Mahmoud, M. M. & Kosikowski, F. V. (1982). Alcohol and single cell protein production by Kluyveromyces in concentrated whey permeates with reduced ash. J. Dairy Sci., 65, 2082–7.

    Article  Google Scholar 

  • Metwally, M. E., Amundson, C. H., Garver, J. C. & Shackleford, R. M. (1964). Preparation and utilization of a protein-enriched food supplement from fermented whey. J. Dairy Sci., 46, 680.

    Google Scholar 

  • Meyrath, J. & Bayer, K. (1979). Biomass from whey. Econ. Microbiol., 4, 20769.

    Google Scholar 

  • Moebus, O. & Lembke, A. (1975). Kieler Milchwirtschaftliche Forschungsberichte., 27, 3. (Cited by J. Meyrath & K. Bayer (1979). Biomass from whey. Econ. Microbiol., 4, 207–69.)

    Google Scholar 

  • Moebus, O. & Teuber, M. (1983). General aspects of production of biomass by yeast fermentation from whey and permeate. In Production and Feeding of Single Cell Proteins. Proc. COST Workshop,Zurich, Switzerland,eds M. P. Ferranti and A. Fletcher. Applied Science Publishers, London, pp. 124–8.

    Google Scholar 

  • Moon, N. J. & Hammond, E.G. (1978). Oil production by fermentation of lactose and the effect of temperature on the fatty acid composition. J. Am. Oil Chem. Soc., 55, 683–8.

    Article  Google Scholar 

  • Moresi, M., Colicchio, A. & Sansovini, F. (1980). Optimization of whey fermen-tation in a jar fermenter. Eur. J. Appl. Microbiol. Biotechnol., 9, 173–83.

    Article  Google Scholar 

  • Moulin, G., Guillaume, M. & Galzy, P. (1980). Alcohol production by yeast in whey ultrafiltrate. Biotechnol. Bioeng., 22, 1277–81.

    Article  Google Scholar 

  • Moulin, G., Malige, B. & Galzy, P. (1983). Balanced flora of an industrial fermenter: production of yeast from whey. J. Dairy Sci., 66, 21–8.

    Article  Google Scholar 

  • Muller, L. L. (1969). Fermentation media: Yeast products from whey. Process Biochem., 4(1), 21–3, 26.

    Google Scholar 

  • Office of Technology Assessment (OTA). (1984). Commercial Biotechnology. An International Analysis. Congress of the United States Office of Technology Assessment, Washington, DC.

    Google Scholar 

  • O’Leary, V. S., Green, R., Sullivan, B. C. & Holsinger, V. H. (1977a). Alcohol production by selected yeast strains in lactase-hydrolyzed acid whey. Biotechnol. Bioeng., 19, 1019–35.

    Article  Google Scholar 

  • O’Leary, V. S., Sutton, C., Bencivengo, M., Sullivan, B. C. & Holsinger, V. H. (1977b). Influence of lactose hydrolysis and solids concentration on alcohol production by yeast in acid whey ultrafiltrate. Biotechnol. Bioeng., 19, 1689702.

    Google Scholar 

  • Rajagopalan, K. & Kosikowski, F. V. (1982). Alcohol from membrane processed concentrated cheese whey. Ind. Eng. Chem. Prod. Res. Dev., 21, 82–7.

    Article  Google Scholar 

  • Rao, M. V. & Dutta, S. M. (1977). Production of beta-galactosidase from Strep- tococcus thermophilus grown in whey. Appl. Environ. Microbiol., 34, 185–8.

    Google Scholar 

  • Reddy, C. A., Henderson, H. E. & Erdman, M. D. (1976). Bacterial fermentation of cheese whey for production of a ruminant feed supplement rich in crude protein. Appl. Environ. Microbiol. 32, 769–76.

    Google Scholar 

  • Rogosa, M., Browne, H. H. & Whittier, E. O. (1947). Ethyl alcohol from whey. J. Dairy Sci., 30, 263–9.

    Article  Google Scholar 

  • Sandbach, D. M. L. (1981). Production of potable grade alcohol from whey. Cult. Dairy Prod. J., 16 (4), 17–19, 22.

    Google Scholar 

  • Sandhu, D. K. & Wariach, M. K. (1983). Conversion of cheese whey-to-single cell protein. Biotechnol. Bioeng., 25, 797–808.

    Article  Google Scholar 

  • Scott, R. (1981). Cheesemaking Practice. Applied Science Publishers, London.

    Google Scholar 

  • Shay, L. K. & Wegner, G. H. (1986). Nonpolluting conversion of whey permeate to food yeast protein. J. Dairy Sci., 69, 676–83.

    Article  Google Scholar 

  • Somkuti, G. A. & Bencivengo, M. M. (1981). Citric acid fermentation in whey permeate. Dev. Ind. Microbiol., 22, 557–63.

    Google Scholar 

  • Speckman, R. A. & Collins, E. B. (1982). Microbial production of 2,3-butylene glycol from cheese whey. Appl. Environ. Microbiol., 43, 1216–18.

    Google Scholar 

  • Stauffer, K. R. & Leeder, J. G. (1978). Extracellular microbial polysaccharide production by fermentation on whey or hydrolyzed whey. J. Food Sci., 43, 756–8.

    Article  Google Scholar 

  • Stenroos, S. L., Linko, Y. Y. & Linko, P. (1982). Production of L-lactic acid with immobilized Lactobacillus delbrueckii. Biotechnol. Lett., 4, 159–64.

    Article  Google Scholar 

  • Stieber, R. W. & Gerhardt, P. (1976). Continuous process for ammonium-lactate fermentation of deproteinized whey. J. Dairy Sci., 62, 1558–66.

    Article  Google Scholar 

  • Stieber, R. W. & Gerhardt, P. (1977). Dialysis continuous process for ammonium-lactate fermentation: improved mathematical model and use of deproteinized whey. Appl. Environ. Microbiol., 37, 487–95.

    Google Scholar 

  • Stieber, R. W. & Gerhardt, P. (1980). Production of Lactobacillus cells by dialysis fermentation of deproteinized whey. J. Dairy Sci., 63: 722–30.

    Article  Google Scholar 

  • Stieber, R. W., Coulman, G. A. & Gerhardt, P. (1977). Dialysis continuous process for ammonium lactate fermentation by whey: Experimental test. Appl. Environ. Microbial., 34, 733–9.

    Google Scholar 

  • Sutton, P. M. & Li, A. (1979). Anitron and Oxitron systems high rate aerobic and anaerobic biological treatment system for industry. In Proc. 36th Ind. Waste Conf., Purdue Univ., W. Lafayette, IN, pp. 665–77.

    Google Scholar 

  • Switzenbaum, M. S. & Danskin, S. C. (1982a). Anaerobic expanded bed treatment of whey. In Proc. 36th Ind. Waste Conf.,Purdue Univ., W. Lafayette, IN., pp. 414–24.

    Google Scholar 

  • Switzenbaum, M. S. & Danskin, S. C. (1982b). Anaerobic expanded bed treatment of whey. Agric. Wastes, 4, 411–26.

    Article  Google Scholar 

  • Vrignaud, Y. (1976). Die Osterreichische Milchwirtschaft, 31, 405. (Cited in J. Meyrath & K. Bayer (1979). Biomass from whey. Econ. Microbiol., 4, 20769.)

    Google Scholar 

  • Wasserman, A. E. (1960). Whey utilization. II. Oxygen requirements of Sac-charomyces fragilis growing in whey medium. Appl. Microbiol., 8, 291–7.

    Google Scholar 

  • Wasserman, A. E., Hampson, J. W. & Alvare, N. F. (1961). Large scale production of yeast in whey. J. Water Poll. Contr. Fedr.,33, 1090.

    Google Scholar 

  • Zadow, J. G. (1984). Lactose: Properties and uses. J. Dairy Sci., 67, 2654–79.

    Article  Google Scholar 

  • Ziekus, J. G. (1980). Chemical and fuel production by anaerobic bacteria. Ann. Rev. Microbiol., 34, 423–64.

    Article  Google Scholar 

  • Ziekus, J. G. (1981). Microbial populations in digesters. In Anaerobic Digestion, eds B. I. Stafford & M. Wheatley, Applied Science Publishers, London, pp. 61–87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Kilara, A., Patel, M.T. (1992). Whey and Lactose Fermentation. In: Zadow, J.G. (eds) Whey and Lactose Processing. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2894-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2894-0_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-753-6

  • Online ISBN: 978-94-011-2894-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics