Skip to main content

FEM-LIFTAP, A Finite Element Lifetime Analysis Postprocessor for Ceramic Components

  • Chapter
4th International Symposium on Ceramic Materials and Components for Engines

Abstract

In recent years, several failure probability postprocessing programs for FE-codes applied to ceramic components have been developed. All postprocessors combine the statistical strength description according to Weibull with different strength theories as for example the ‘Principal Stress Theory’ linked to the ‘Principle of Independent Action’ or the ‘Linear Elastic Fracture Mechanics’ approach, both accounting for multiaxialloading. Moreover, the program includes a ‘Lifetime Processor’ which allows the calculation of the time-dependent failure probability of the ceramic component if strength degradation occurs due to subcritical crack growth. In a typical example, the time-dependent failure probability of an automotive ceramic exhaust valve was calculated using the mean value of the positive principal stresses as strength criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bowman, K.J, Reyes-Morel, P.E and Chen, I-W, Reversible transformation plasticity in uniaxial tension-compression cycling of Mg-PSZ. Mat. Res. Soc. Symp. Proc.,1987, 78,51–57.

    Article  Google Scholar 

  2. Grathwohl, G, Ermüdung von Keramik unter Schwingbeanspruchung, Mat.-wiss. u. Werkstofftech., 1988, 19, 113–124.

    Article  Google Scholar 

  3. Ritchie, R.O and Dauskardt, R.M, Cyclic fatigue of ceramics: A fracture mechanics approach to sub critical crack growth and life prediction, to be published in J. Ceram. Soc. Jap., 1991, 99.

    Google Scholar 

  4. Tradinik, W, Kromp, K and Pabst, R.F, A combination of statistic and sub critical crack extension,Mat. Sc. Eng., 1982, 56, 39–46.

    Article  Google Scholar 

  5. Davidge, R.W, McLaren, J.R and Tappin, G, Strength-probability-time (SPT) relationships in ceramics, J. Mater. Sci., 1973,8’ 1699–05.

    Article  Google Scholar 

  6. Lauf, S, Pabst, R.F, Strength-probability-time diagrams and the strength function — A critical examination. In Ceramic Materials and Components for Engines, eds. W. Bunk, H. Hausner, DKG, Bad Honnef, 1986, 961–977.

    Google Scholar 

  7. Stanley, P, Fessler, H and Sivill, A.D, An engineer’s Approach to the prediction of failure probability of brittle components. In Proc. Brit. Ceram. Soc., ed. D.J. Godfrey, BCS, Stoke-on-Trent, 1973, 22, 453–487.

    Google Scholar 

  8. Evans, A.G, A general approach for the statistical analysis of multiaxial fracture, J. Am. Ceram. Soc., 1978, 61, 302–308.

    Article  Google Scholar 

  9. Rossmanith, H.P, Grundlagen der Bruchmechanik, Wien, 1982.

    Book  Google Scholar 

  10. Ikeda, K, Igaki, H and Kuroda T, Fracture strength of alumina under uniaxial and triaxial stress states, Am. Ceram. Soc. Bull., 1986, 65, 683–88.

    Google Scholar 

  11. Jayatilaka, A. de S., Fracture of Engineering Brittle Materials, Appl. Sc. Publ., London, 1979.

    Google Scholar 

  12. Creyke, W.E.C, Sainsbury, I.E.J and Morell, R, Design with Non-ductile Materials, Appl. Sc. Publ., London-New York, 1982.

    Google Scholar 

  13. Lamon, J., Ceramic Reliability: Statistical analysis of multiaxial failure using the Weibull approach and the Multiaxial elemental strength model, J. Am. Ceram. Soc., 1990, 73, 2204–12.

    Article  Google Scholar 

  14. Nemeth, N.N, Manderscheid, J.M and Gyekenyesi, J.P, Ceramic analysis and reliability evaluation of structures (CARES), NASA Technical Paper 2916, 1990.

    Google Scholar 

  15. Magerl, F, unpublished, University of Stuttgart, 1989.

    Google Scholar 

  16. Nemeth, N.N, Manderscheid, J.M and Gyekenyesi, J.P, Design of ceramic components with the NASA/CARES computer programm, NASA Techn. Mem. 102369,1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Elsevier Science Publishers Ltd and MPA Stuttgart

About this chapter

Cite this chapter

Kussmaul, K., Lauf, S., Turan, K. (1992). FEM-LIFTAP, A Finite Element Lifetime Analysis Postprocessor for Ceramic Components. In: Carlsson, R., Johansson, T., Kahlman, L. (eds) 4th International Symposium on Ceramic Materials and Components for Engines. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2882-7_105

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2882-7_105

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-776-5

  • Online ISBN: 978-94-011-2882-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics