Genetic Engineering of Predators and Parasitoids for Pesticide Resistance

  • Marjorie A. Hoy

Abstract

Genetic selection of phytoseiid predators for pesticide resistance has been shown to be a practical and cost effective tactic for the biological control of spider mites. Field tests have been conducted with several manipulated phytoseiid species and some are being used in integrated pest management programs in agriculture. Development of resistant strains of parasitoids and insect predators currently lags behind efforts with predatory mites, but several laboratory-selected insect natural enemies are being evaluated for incorporation into integrated pest management programs. The use of mutagenesis and recombinant DNA (rDNA) techniques could improve the efficiency of genetic improvement projects. Critical research needs include identifying and cloning useful resistance genes, developing methods for maintaining fitness of the manipulated strains, learning how to manage and maintain released strains, and developing improved methods for inserting resistance genes into the germline of beneficial arthropods. Protocols for evaluating risks associated with the release of arthropod natural enemies that have been manipulated with rDNA methods need to be developed well in advance so that excessive delays in evaluating efficacy and fitness in the field can be avoided.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mally, C. W., On the selection and breeding of desirable strains of beneficial insects. S. Afr. J. Sci., 1916, 13, 369–385.Google Scholar
  2. 2.
    Garcia, R., Caltagirone, L. E., Gutierrez, A. P., Comments on a redefinition of biological control. BioScience, 1988, 38, 692–694.CrossRefGoogle Scholar
  3. 3.
    DeBach, P., Selective breeding to improve adaptations of parasitic insects. Proc. X Intern. Cong. Entomol.. 1958, 4, 759–768.Google Scholar
  4. 4.
    Hoy, M. A., Use of genetic improvement in biological control. Agric. Ecosys. Environ., 1986, 15, 109–119.CrossRefGoogle Scholar
  5. 5.
    Beckendorf, S. K. and Hoy, M. A., Genetic improvement of arthropod natural enemies through selection, hybridization or genetic engineering techniques. In Biological Control in Agricultural IPM Systems, eds., M. A. Hoy and D. C. Herzog, Academic Press, N.Y., 1985, pp. 167–187.Google Scholar
  6. 6.
    Mouches, C., Cloning and characterization of genes responsible for resistance in mosquitoes to insecticides: future prospects of genetic engineering of beneficial arthropods. Proc. Intn. Symp. Fruit Flies, Hania, Crete, 1986, p. 16.Google Scholar
  7. 7.
    Bartlett, A. C., Guidelines for genetic diversity in laboratory colony establishment and maintenance. In Handbook of Insect Rearing, eds., P. Singh and R. Moore, 1985, Elsevier Science Publ., Amsterdam, pp. 7–17.Google Scholar
  8. 8.
    Hoy, M. A., Genetic improvement of arthropod natural enemies: becoming a conventional tactic? In New Directions in Biological Control, UCLA Symp. Molecular & Cellular Biology, New Series, 1990, 112, eds., R. Baker & P. Dunn, Alan R. Liss, N.Y., pp. 405–417.Google Scholar
  9. 9.
    Sailer, R I., Possibilities for genetic improvement of beneficial insects. In Germ Plasm Resources, 1961, American Assoc. Advance.Science, Washington, D.C., pp. 295–303.Google Scholar
  10. 10.
    Hoy, M. A., Recent advances in genetics and genetic improvement of the Phytoseiidae. Ann. Rev. Entomol., 1985, 30, 345–370.CrossRefGoogle Scholar
  11. 11.
    Croft, B. A., Arthropod Biological Control Agents and Pesticides, Wiley-Interscience, New York, 1990, 723 pp.Google Scholar
  12. 12.
    Hoy, M. A., Pesticide resistance in arthropod natural enemies: variability and selection responses. In Pesticide Resistance in Arthropods, eds., R. T. Roush and B.E. Tabashnik, Chapman and Hall, New York, 1990, pp. 203–236.Google Scholar
  13. 13.
    Pielou, D. P. and Glasser, R. F., Selection for DDT resistance in a beneficial insect parasite. Science. 1952, 115, 117–118.PubMedCrossRefGoogle Scholar
  14. 14.
    Robertson, J. G., Changes in resistance to DDT in Macrocentrus ancylivorus. Can. J. Zool., 1957, 35, 629–33.CrossRefGoogle Scholar
  15. 15.
    Adams, C. H. and Cross, W. H., Insecticide resistance in Bracon mellitor, a parasite of the boll weevil. J. Econ. Entomol.. 1967, 60, 1016–20.Google Scholar
  16. 16.
    McMurtry, J. A., Huffaker, C. B., and van de Vrie, M., I.Tetranychid enemies: their biological characters and the impact of spray practices. Hilgardia, 1970, 40, 331–390.Google Scholar
  17. 17.
    Huffaker, C. B., van de Vrie, M. and McMurtry, J. A., II. Tetranychid populations and their possible control by predators: an evaluation. Hilgardia. 1970, 40, 391–458.Google Scholar
  18. 18.
    Gambaro, P. I., Selezione di popolazioni di Acari predatori resistenti ad alcuni insetticidi fosforati-organici. Inform. Fitopatol. [In Italian], 1975, 25, 21–25.Google Scholar
  19. 19.
    Caccia, R, Baillod, M., E. Guignard, and Kreiter, S., Introduction d’une souche de Amblyseius andersoni Chant (Acari, Phytoseiidae) resistant a l’azinphos, dans la lutte contre les acariens phytophages en viticulture, Rev. Suisse Yitic, Arboric, Hortic., 1985, 17, 285–90.Google Scholar
  20. 20.
    Motoyama, N., Rock, G. C., Dauterman, W. C., Organophosphorus resistance in an apple orchard population of Typhlodromus (Amblyseius) fallacis. J. Econ. Entomol., 1970, 63, 1439–42.Google Scholar
  21. 21.
    Croft, B. A. and Meyer, R H., Carbamate and organophosphorus resistance patterns in populations of Amblyseius fallacis. Environ. Entomol., 1973, 2, 691–5.Google Scholar
  22. 22.
    Strickler, K. and Croft, B. A., Variation in permethrin and azinphosmethyl resistance in populations of Amblyseius fallacis (Acarina: Phytoseiidae). Environ. Entomol., 1981, 10, 233–36.Google Scholar
  23. 23.
    Watve, C. M. and Lienk, S. E., Toxicity of carbaryl and six organophosphorus insecticides to Amblyseius fallacis and Typhlodromus pyri from New York apple orchards. Environ. Entomol. 1976, 5, 368–70.Google Scholar
  24. 24.
    Rock, G. C. and Yeargan, D. R., Relative toxicity of pesticides to organophosphorusresistant orchard populations of Neoseiulus fallacis and its prey. J. Econ. Entomol. 1971, 64, 350–52.Google Scholar
  25. 25.
    Croft, B. A., Brown, A. W. A. and Hoying, S. A., Organophosphorus-resistance and its inheritance in the predaceous mite Amblyseius fallacis. J. Econ. Entomol. 1976, 69, 64–68.Google Scholar
  26. 26.
    Croft, B. A. and Hoying, S. A., Carbaryl resistance in native and released populations of Amblyseius fallacis. Environ. Entomol.. 1975, 4, 895–98.Google Scholar
  27. 27.
    Smith, F.S., Henneberry, T. J. and Boswell, A. L., The pesticide tolerance of Typhlodromus fallacis (Garman) and Phytoseiulus persimilis A. H. with some observations on the predator efficiency of P. persimilis. J. Econ. Entomol. 1963, 56, 274–8.Google Scholar
  28. 28.
    Hamamura, T., Studies on the biological control of Kanzawa spider mite, Tetranychus kanzawai Kishida by the chemical resistant predacious mite, Amblyseius longispinosus (Evans) in tea fields (Acarina: Tetranychidae, Phytoseiidae). Bull. Nat. Res. Inst. Tea [In Japanese], 1986, 21, 121–201.Google Scholar
  29. 29.
    Hanamura, T., Biological control of the Kanzawa spider mite, Tetranychus kanzawai Kishida, in tea fields by the predacious mite, Amblyseius longispinosus (Evans), which is resistant to chemicals (Acarina: Tetranychidae, Phytoseiidae). J.A.R.O.. 1987, 21, 109–116.Google Scholar
  30. 30.
    Mochizuki, M., A strain of the predatory mite Amblyseius longispinosus (Evans) resistant to permethrin, developing in the tea plantation of Shizuoka Prefecture (Acarina: Phytoseiidae). Japn. J. Annl. Ent. Zool.,[In Japanese], 1990, 34, 171–74.Google Scholar
  31. 31.
    Anon., Studies on the integrated control of the citrus red mite with the predaceous mite as a principal controlling agent. Acta Entomologica Sinica [In Chinese] 1978, 21, 260–270.Google Scholar
  32. 32.
    Inoue, K., Osakabe, M. and Ashihara, W., Identification of pesticide resistant phytoseiid mite populations in citrus orchards, and on grapevines in glasshouses and vinyl-houses (Acarina: Phytoseiidae) [In Japanese]. Jpn. J. Annl. Ent. Zool. 1987, 31, 398–403.Google Scholar
  33. 33.
    Adams, J. and Prokopy, R., Apple aphid control through natural enemies. Massachusetts Fruit Notes, 1977, 64(6), 6–10.Google Scholar
  34. 34.
    Schoonees, J. and Giliomee, J. H., The toxicity of methidathion to parasitoids of red scale, Aonidiella aurantii (Hemiptera: Diaspididae). J. Entomol. Soc. South Africa, 1982, 45, 261–73.Google Scholar
  35. 35.
    Havron, A. and Rosen, D., Selection for pesticide resistance in Aphytis. Proc. Sixth Intern. Citrus Congress, Tel Aviv, Israel, R. Goren and K. Mendel (Eds.), Balaban Publ., Philadelphia/Rehovot, 1988. pp. 1187–93.Google Scholar
  36. 36.
    Strawn, A. J., Differences in response to four organophosphates in the laboratory of strains of Aphytis melinus and Comperiella bifasciata from citrus groves with different pesticide histories, M.S. thesis, 1978, Univ. California, Riverside.Google Scholar
  37. 37.
    Rosenheim, J. A. and Hoy, M. A., Intraspecific variation in levels of pesticide resistance in field populations of a parasitoid, Aphytis melinus (Hymenoptera: Aphelinidae): the role of past selection pressures. J. Econ. Entomol.. 1986, 81, 1161–73.Google Scholar
  38. 38.
    Mansour, F., A malathion-tolerant strain of the spider Chiracanthium mildei and its response to chlorpyrifos. Phytoparasitica, 1984, 12(3-4), 163–66.CrossRefGoogle Scholar
  39. 39.
    Grafton-Cardwell, E. E. and Hoy, M. A., Intraspecific variability in response to pesticides in the common green lacewing, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Hilgardia, 1985, 53(6), 1–32.Google Scholar
  40. 40.
    Pree, D. J., Archibold, D.E. and Morrison, R. K. Resistance to insecticides in the common green lacewing Chrysoperla carnea (Neuroptera: Chrysopidae) in southern Ontario. J. Econ. Entomol. 1989, 82, 29–34.Google Scholar
  41. 41.
    Atallah, Y. H. and Newsom, L. D., Ecological and nutritional studies on Coleomegilla maculata DeGeer (Coleoptera: Coccinellidae). III. The effect of DDT, toxaphene and endrin on the reproductive and survival potentials. J. Econ. Entomol.. 1966, 59, 1181–87.Google Scholar
  42. 42.
    Rathman, R. J., Johnson, M. W., Rosenheim, J. A., and Tabashnik, B. E., Carbamate and pyrethroid resistance in the leafminer parasitoid Diglyphus begini (Hymenoptera: Eulophidae). J. Econ. Entomol.. 1990, 83, 2153–58.Google Scholar
  43. 43.
    Kennett, C. E., Resistance to parathion in the phytoseiid mite Amblyseius hibisci. J. Econ. Entomol., 1970, 63, 1999–2000.Google Scholar
  44. 44.
    Tanigoshi, L. K. and Congdon, B. D., Laboratory toxicity of commonly-used pesticides in California citriculture to Euseius hibisci (Chant) (Acarina: Phytoseiidae). J. Econ. Entomol. 1983, 76, 247–50.Google Scholar
  45. 45.
    Huffaker, C. B. and Kennett, C. E., Differential tolerance to parathion of two Typhlodromus predatory on cyclamen mite. J. Econ. Entomol., 1953, 46, 707–708.Google Scholar
  46. 46.
    Morgan, C. V. G. and Anderson, N. H., Notes on parathion-resistant strains of two phytophagous mites and a predacious mite in British Columbia. Can. Entomol., 1958, 90, 92–97.CrossRefGoogle Scholar
  47. 47.
    Hoyt, S. C., Integrated chemical control of insects and biological control of mites on apple in Washington. J. Econ. Entomol., 1969, 62, 74–86.Google Scholar
  48. 48.
    Hoy, M. A. and Knop, N. P., Studies on pesticide resistance in the phytoseiid Metaseiulus occidentalis in California. In J.G. Rodriguez, ed., Recent Advances in Acarology, 1979, I, Academic Press, N. Y., pp. 89–94.Google Scholar
  49. 49.
    Hoy, M. A. and Standow, K. A., Inheritance of resistance to sulfur in the spider mite predator Metaseiulus occidentalis. Entomol. Exp. Appl. 1982, 31, 316–23.CrossRefGoogle Scholar
  50. 50.
    Schulten, G. G. M., and van de Klashorst, G., Genetics of resistance to parathion and demeton-s-methyl in Phytoseiulus persimilis A-H (Phytoseiidae). Proc. IV Intn. Cong. Acarol.. Saalfelden, Austria, 1974, pp. 519–24.Google Scholar
  51. 51.
    Schulten, G. G. M., van de Klashorst, G. and Russell, V. M., Resistance of Phytoseiulus persimilis A. H. (Acari: Phytoseiidae) to some insecticides. Zeitschrft. angew. Entomol. 1976, 80, 337–41.CrossRefGoogle Scholar
  52. 52.
    Putman, W. L. and Heme, D.C., The role of predators and other biotic factors in regulating the population density of phytophagous mites in Ontario peach orchards. Can. Entomol., 1966, 98, 808–20.CrossRefGoogle Scholar
  53. 53.
    Hoyt, S. C., Resistance to azinphosmethyl of Typhlodromus pyri (Acarina: Phytoseiidae) from New Zealand. N.Z.J. Sci., 1972, 15, 16–21.Google Scholar
  54. 54.
    Penman, D. R., Ferro, D. N. and Wearing, C. H., Integrated control of apple pests in New Zealand. VII. Azinphosmethyl resistance in strains of Typhlodromus pyri from Nelson. N.Z.J. Exp. Agric., 1976, 4, 377–80.Google Scholar
  55. 55.
    Baillod, M. and Guignard, E., Resistance de Typhlodromus pyri Scheuten a lazinphos et lutte biologique contre les acariens phytophages en arboriculture. Rev. Suisse Vitic. Arboric. Hortic., 1984, 16, 155–60.Google Scholar
  56. 56.
    Kapetanakis, E. G. and Cranham, J. E., Laboratory evaluation of resistance to pesticides in the phytoseiid predator Typhlodromus pyri from English apple orchards. Ann. Appl. Biol.. 1983, 103, 389–400.CrossRefGoogle Scholar
  57. 57.
    van de Baan, H. E., Kuijpers, L. A. M., Overmeer, W. P. J. and Oppenoorth, F. J., Organophosphorus and carbamate resistance in the predacious mite Typhlodromus pyri due to insensitive acetylcholinesterase. Exper. Appl. Acarol., 1985, 1, 3–10.CrossRefGoogle Scholar
  58. 58.
    Overmeer, W. P. and van Zon, A. Q., Resistance to parathion in the predaceous mite Typhlodromus pyri Scheuten. Meded. Fac. Landbouwwet. Rijksuniv. Gent., 1983, 48, 237–51.Google Scholar
  59. 59.
    Hadam, J. J., Aliniazee, M., and Croft, B. A., Phytoseiid mites (Parasitiformes: Phytoseiidae) of major crops in Willamette Valley, Oregon, and pesticide resistance in Typhlodromus pyri Scheuten. Environ. Entomol., 1986, 15, 1255–63.Google Scholar
  60. 60.
    Croft, B. A. and Barnes, M. M., Comparative studies on four strains of Typhlodromus occidentalis: III. Evaluations of releases of insecticide resistant strains into an apple orchard ecosystem. J. Econ. Entomol.. 1971, 64, 845–50.Google Scholar
  61. 61.
    Hoy, M. A., Integrated mite management for California almond orchards. In Spider Mites. Their Biology, Natural Enemies and Control, W. Helle and M. W. Sabelis, eds., 1985, 1B, 299–310.Google Scholar
  62. 62.
    Roush, R. T. and Hoy, M. A., Genetic improvement of Metaseiulus occidentalis: selection with methomyl, dimethoate, and carbaryl and genetic analysis of carbaryl resistance. J. Econ. Entomol.. 1981, 74, 138–141.Google Scholar
  63. 63.
    Roush, R.T. and Hoy, M. A., Laboratory, glasshouse, and field studies of artificially selected carbaryl resistance in Metaseiulus occidentalis. J. Econ. Entomol.. 1981, 74, 142–47.Google Scholar
  64. 64.
    Hoy, M. A. and Knop, N. F., Selection for an genetic analysis of permethrin resistance in Metaseiulus occidentalis: genetic improvement of a biological control agent. Entomol. Exp. Appl., 1981, 30, 10–18.CrossRefGoogle Scholar
  65. 65.
    Hoy, M.A., Genetic improvement of a biological control agent: multiple pesticide resistance and nondiapause in Metaseiulus occidentalis. Acarolology VI, 1984, 2, 673–79.Google Scholar
  66. 66.
    Headley, J. C. and Hoy, M. A., Benefit/cost analysis of an integrated mite management program for almonds. J. Econ. Entomol., 1987, 80, 555–59.Google Scholar
  67. 67.
    Bruce-Oliver, S. J. and Hoy, M. A., The effect of prey stage on the life table attributes of a genetically-manipulated COS strain of Metaseiulus occidentalis (Nesbitt) (Acari: Phytoseiidae). Exp. Appl. Acarol.. 1990, 9, 201–217.CrossRefGoogle Scholar
  68. 68.
    Field, R. P. and Hoy, M. A., Evaluation of genetically improved strains of Metaseiulus occidentalis (Nesbitt) for integrated control of spider mites on roses in greenhouses. Hilgardia, 1985, 54(2), 1–32.Google Scholar
  69. 69.
    Roush, R. T. and Tabashnik, B. E., eds., Pesticide Resistance in Arthropods, 1990, Chapman and Hall, New York, 303 pp.Google Scholar
  70. 70.
    Abdelrahman, I., Toxicity of malathion to the natural enemies of California red scale, Aonidiella aurantii (Mask.) (Hemiptera: Diaspididae). Australian J. Agric. Res., 1973, 24, 119–33.CrossRefGoogle Scholar
  71. 71.
    Delorme, R., Angot, A. and Auge, D., Variations de sensibilite d’Encarsia formosa Gahan (Hym: Aphelinidae) soumis a des pressions de selection insecticide: approches biologique et biochemique. Agronomie, 1984, 4, 305–09.CrossRefGoogle Scholar
  72. 72.
    Strickler, K. and Croft, B. A., Selection for permethrin resistance in the predatory mite Amblyseius fallacis. Entomol. Exp. Appl.. 1982, 31, 339–45.CrossRefGoogle Scholar
  73. 73.
    Whalon, M. E., Croft, B. A. and Mowry, T. M., Introduction and survival of susceptible and pyrethroid-resistant strains of Amblyseius fallacis in a Michigan apple orchard. Environ. Entomol., 1982, 11, 1096–99.Google Scholar
  74. 74.
    Huang, M. D., Ziong, J. J. and Du, T.Y., The selection for and genetical analysis of phosmet resistance in Amblyseius nicholsi. Acta Entomol.Sinica, 1987, 30, 133–39.Google Scholar
  75. 75.
    Du, T. Y., and Xiong, L. J., The selection for and genetical analyses of ph os metdimehypol resistance in Amblyseius nicholsi. [In Chinese], In: Studies on the Integrated Management of Citrus Insect Pests, Huang Ming-du, ed., 1989, Academic Book and Periodical Press, Beijing, 56–62.Google Scholar
  76. 76.
    Du, T. Y., Xiong, L. J., and Huang, M. D., Observation on bionomics of ph os metresistant strain in Amblyseius nicholsi Ehara et Lee. Natural Enemies of Insects, [In Chinese], 1987, 9(3), 173–176.Google Scholar
  77. 77.
    Xiong, J. J., Du, T. Y. and Huang, M. D., Field studies in citrus orchards of phosmet-resistant strain of Amblyseius nicholsi Ehara et Lee, Natural Enemies of Insects, [In Chinese], 1989, 11, 50–55.Google Scholar
  78. 78.
    Ke, L. S., Yang, Y.Y., and Xin, J. L., Selection for and genetic analysis of dimethoate resistance in Amblyseius pseudolongispinosus. Acta Entomol.Sinica [In Chinese], 1990, 33, 393–97.Google Scholar
  79. 79.
    Havron, A. and Rosen, D., Selection for pesticide resistance in Aphytis. In: Proceedings of the Sixth International Citrus Congress, Goren, R. and Mendel, K., ed., 1988, Balaban Publishers, Philadelphia/Rehovot, 1187–1193.Google Scholar
  80. 80.
    Rosenheim, J. A. and Hoy, M. A., Genetic improvement of a parasitoid biological control agent: artificial selection for insecticide resistance in Aphytis melinus. J. Econ. Entomol., 1988, 81, 1539–50.Google Scholar
  81. 81.
    Grafton-Cardwell, E. E. and Hoy, M. A., Genetic improvement of common green lacewing, Chrysoperla carnea (Neuroptera: Chrysopidae): selection for carbaryl resistance. Environ. Entomol.. 1986, 15, 1130–36.Google Scholar
  82. 82.
    Roush, R. T., Peacock, W. L., Flaherty, D. L. and Hoy, M. A., Dimethoate-resistant spider mite predator survives field tests. California Agriculture, 1980, 34(5), 12–13.Google Scholar
  83. 83.
    Roush, R. T. and Plapp, F.W., Biochemical genetics of resistance to aryl carbamate insecticides in the predaceous mite, Metaseiulus occidentalis. J. Econ. Entomol., 1982, 75, 304–307.Google Scholar
  84. 84.
    Hoy, M. A., and Ouyang, Y. L., Selection of the western predatory mite, Metaseiulus occidentalis (Acari: Phytoseiidae), for resistance to abamectin. J. Econ. Entomol., 1989, 82, 35–40.Google Scholar
  85. 85.
    Petrushov, A. Z., Genetic and biochemical mechanisms of Ambush resistance in Metaseiulus occidentalis (Acarina: Phytoseiidae). [Abstract] VIII Intern. Congress of Acarology, Ceske Budejovice, Czechoslovakia, Aug. 6-11,1990.Google Scholar
  86. 86.
    Avella, M., Fournier, D., Pralavorio, M. and Berge, J.,B., Selection pour la resistance a la deltamethrine d’une souche de Phytoseiulus persimilis Athias-Henriot. Agronomie, 1985, 5, 177–80.CrossRefGoogle Scholar
  87. 87.
    Konig, V. K. and Hassan, S. A., Resistenz und Kreuzresistenz der Raubmilbe Phytoseiulus persimilis (Athias-Henriot) gegenüber organischen Phosphorsäureestern. Zeitsch. angew. Entomol. 1986, 101, 206–15.Google Scholar
  88. 88.
    Fournier, D., Pralavorio, M., Trottin-Caudal, Y., Coulon, J., Malezieux, S., and Berge, J. B., Selection artificielle pour la resistance au methidathion chez Phytoseiulus persimilis AH. Entomophaga, 1987, 32, 209–19.CrossRefGoogle Scholar
  89. 89.
    Fournier, D., Pralavorio, M., Coulon, J., Berge, J. B., Fitness comparison in Phytoseiulus persimilis strains resistant and susceptible to methidathion. Exp. Appl. Acarol., 1987, 5, 55–64.CrossRefGoogle Scholar
  90. 90.
    Fournier, D., Pralavorio, M., Cuany, A., and Berge, J. B., Genetic analysis of methidathion resistance in Phytoseiulus persimilis (Acari: Phytoseiidae). J. Econ. Entomol., 1988, 4, 1008–13.Google Scholar
  91. 91.
    Xu, X., Li, K.H., Li, Y.F., Moon, Z.,and Li, L.Y., Culture of resistant strain of Trichogramma japonicum to pesticides. Nat. Enemies of Insects. 1986, 8(3), 150–54.Google Scholar
  92. 92.
    Hoy, M. A. and Cave, F. E., Guthion-resistant strain of walnut aphid parasite. Calif. Agric., 1988, 42(4), 4–5.Google Scholar
  93. 93.
    Hoy, M. A. and Cave, F. E., Toxicity of pesticides used in walnuts to a wild and laboratory-selected azinphosmethyl-resistant strain of Trioxys pallidus. J. Econ. Entomol., 1989, 82, 1585–92.Google Scholar
  94. 94.
    Hoy, M. A., Cave, F.E., Beede, R., Grant, R., Krueger, W., Olson, W., Spollen, W., Barnett, W. and Hendricks, L. C., Release, dispersal, and recovery of a laboratory-selected azinphosmethyl-resistant strain of the walnut aphid parasite Trioxys pallidus. J. Econ. Entomol. 1990, 83, 89–96.Google Scholar
  95. 95.
    Hoy, M. A., Cave, F. E. and Caprio, M. A., Guthion-resistant parasite evaluated for implementation. California Agriculture, 1991, in press.Google Scholar
  96. 96.
    Markwick, N. P., Detecting variability and selecting for pesticide resistance in two species of phytoseiid mites. Entomophaga, 1986, 31, 225–36.CrossRefGoogle Scholar
  97. 97.
    Markwick, N. P. Induced resistance in beneficials with particular reference to Typhlodromus pyri Scheuten [Acarina: Phytoseiidae]. Proc. CSIRO/DSIR Workshop. Insecticide Resistance Management. Canberra, July 1986, pp. 91–98.Google Scholar
  98. 98.
    Markwick, N. P., Wearing, C. H., and Shaw, P. W., Pyrethroid insecticides for apple pest control: I. Development of pyrethroid-resistant predatory mites. 43rd N. Z. Weed and Pest Control Conference, August 1990, 296–300.Google Scholar
  99. 99.
    Suckling, D. M., Walker, J. T. S., Shaw, P. W., Markwick, N. P., and Wearing, C. H., Management ofresistance in horticultural pests and beneficial species in New Zealand. Pestic. Sci. 1988, 23, 157–164.CrossRefGoogle Scholar
  100. 100.
    Walker, J. T. S., Markwick, N. P., Wearing, C. H., Shaw, P. W. and White, V., Pyrethroid insecticides for apple pest control: II. Field evaluation of mite and insect control. 43rd N.Z. Weed & Pest Control Conf., August 1990, 301–305.Google Scholar
  101. 101.
    Caprio, M. A, Hoy, M. A and Tabashnik, B. E., A model for implementing a genetically-improved strain of the parasitoid Trioxys pallidus Haliday (Hymenoptera: Aphidiidae). American Entomologist. 1991, in press.Google Scholar
  102. 102.
    Steiner, W. W. M. and Teig, D. A, Microplitis croceipes (Cresson): genetic characterization and developing insecticide resistant biotypes, Southwestern Entomologist. 1989, Suppl.12, 71–87.Google Scholar
  103. 103.
    Serdar, C. M., Murdock, D. C. and Rohde, M. F., Parathion hydrolase gene from Pseudomonas diminuta Mg: subcloning, complete nucleotide sequence, and expression of the nature portion of the enzyme in Escherichia coli. Biotechnology, 1989, 7, 1151–55.Google Scholar
  104. 104.
    Phillips, J. P., Xin, J.H., Kirby, K., Milne, C. P., Krell, P., and Wild, J. R., Transfer and expression of an organophosphate insecticide-degrading gene from Pseudomonas in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA, 1990, 87, 8155–59.Google Scholar
  105. 105.
    Dumas, D. P., Wild, J. R. and Raushel, F. M., Expression of Pseudomonas phosphotriesterase activity in the fall armyworm confers resistance to insecticides. Experientia, 1990, 46, 729–31.PubMedCrossRefGoogle Scholar
  106. 106.
    ffrench-Constant, R. H., Roush, R. T., and MacIntyre, R. J., Isolation, characterization and progress in cloning of cyclodiene insecticide resistance in Drosophila melanogaster. In Molecular Insect Science, H. H. Hagedorn et al., Eds., Plenum Press, N. Y., 1990, 41–48.Google Scholar
  107. 107.
    ffrench-Constant, R. H., Mortlock, D. P., Shaffer, C. D., MacIntyre, R. J. and Roush, R. T., Molecular cloning and transformation of cyclodiene resistance in Drosophila: an invertebrate GABAA receptor locus. Proc. National Acad. Sci. USA, in press.Google Scholar
  108. 108.
    Handler, A. M. and O’Brochta, D. A, Prospects for gene transformation in insects. Annu. Rev. Entomol., 1991, 36, 159–83.PubMedCrossRefGoogle Scholar
  109. 109.
    Walker, V. K., Gene transfer in insects, Adv. Cell Culture, 1989, 7, 87–124.Google Scholar

Copyright information

© SCI 1992

Authors and Affiliations

  • Marjorie A. Hoy
    • 1
  1. 1.Department of EntomologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations