Skip to main content

Positron emission tomography in cardiology: From research device to clinical tool?

  • Chapter
Nuclear Cardiology and Cardiac Magnetic Resonance
  • 55 Accesses

Summary

Positron emission tomography is a rather new diagnostic modality for noninvasive studies of the heart using positron emitting tracers. Important advantages are the use of physiological substrates that can be labeled with positron tracers, the acquisition of accurate tomographic information, and the potential of quantitative measurements not obtainable with any other technique. Especially disorders in myocardial perfusion and metabolism can be studied in a very early stage of the disease process, which may result in application of more appropriate and earlier therapy. Major limitations are the expenses for the positron camera and, in particular, for a cyclotron. However, a positron tracer like rubidium-82 is generator-produced without the need for a cyclotron and provides accurate measurements of myocardial blood flow. Moreover, when effectively used, routine cardiac positron imaging may be cost-saving on the long run. At present, positron emission tomography has been evolved from a complex research device into routinely applicable clinical equipment. It will provide the basis for a specific therapeutic approach in patients with coronary artery disease, thereby justifying the routine, clinical and economic use of positron emission tomography in cardiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Van der Wall EE. Noninvasive imaging of cardiac metabolism, 1987. Editor: van der Wall EE. Martinus Nijhoff Publishers, Dordrechtl BostonlLancaster.

    Google Scholar 

  2. Schelbert HR. Current status and prospects of new radionuclides and radiopharmaceuticals for cardiovascular nuclear medicine. Seminucl Med 1987;17:145-81.

    Google Scholar 

  3. Gould KL, Goldstein RA, Mullani NA et al. Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VID. Clinical feasibility of positron cardiac imaging without a cyclotron using generator-produced rubidium-82. J Am Coll Cardiol 1986;4:775–89.

    Article  Google Scholar 

  4. Goldstein RA, Mullani NA, Wong W-H et al. Positron imaging of myocardial infarction with rubidium-82. J Nucl Med 1986;27:1824–9.

    PubMed  CAS  Google Scholar 

  5. Selwyn AP, Allan RM, L’Abbate AL et al. Relation between regional myocardial uptake of rubidium-82 and perfusion: Absolute reduction of cation uptake in ischemia. Am J Cardiol 1982;52:112–21.

    Article  Google Scholar 

  6. Gould KL, Schelbert HR, Phelps ME, Hoffman EJ: Noninvasive assessment of coronary stenoses with myocardial perfusion imaging during pharmacologic coronary vasodilation. V. Detection of 47 percent diameter coronary stenosis with intravenous nitrogen-13 ammonia emisson-computed tomography in intact dogs. Am J Cardiol 1979;47:200–8.

    Article  Google Scholar 

  7. Bergmann SR, Fox KAA, Rand AL et al. Quantification of regional myocardial blood flow in vivo with H2 15O. Circulation 1984;70:724–33.

    Article  PubMed  CAS  Google Scholar 

  8. Van der Wall EE. Metabolic imaging in cardiology. Current opinion in cardiology 1987;2:1051–57.

    Article  Google Scholar 

  9. Bergmann SR, Lerch RA, Fox KAA et al. Temporal dependence of beneficial effects of coronary thrombolysis characterized by positron tomography. Am J Med 1982;73:573–81.

    Article  PubMed  CAS  Google Scholar 

  10. Ludbook PA, Geltman EM, Tiefenbrunn AJ, Jaffe AS, Sobel BE. Restoration of regional myocardial metabolism by coronary thrombolysis in patients. Circulation 1983;68:III,325 (abstract).

    Google Scholar 

  11. Marshall RC, Tillisch JH, Phelps ME et al. Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography, 18F-labeled fluorodeoxyglucose and N-13 ammonia. Circulation 1983;67:766–78.

    Article  PubMed  CAS  Google Scholar 

  12. De Landsheere C, Raets D, Pierard L et al. Residual metabolic abnormalities and regional viability after a myocardial infarction: a study using positron tomography, F-18 deoxyglucose and flow indicators. J Am Coll Cardiol 1985;5:451 (abstract).

    Google Scholar 

  13. Zimmermann R, Tillmanns H, Knapp WH et al. Regional myocardial nitrogen-13 glutamate uptake in patients with coronary artery disease: Inverse post-stress relation to thallium-201 uptake in ischemia. J Am Coll Cardiol 1988;11:549–56.

    Google Scholar 

  14. Seto M, Syrota A, Crouzel C et al. Beta adrenergic receptors in the dog heart characterized by 11C-CGP 12177 and PET. J Nucl Med 1986;27:P949 (abstract).

    Google Scholar 

  15. Syrota A, Comar D, Paillotin G et al. Muscarinic cholinergic receptor in the human heart evidenced under physiological conditions by positron emission tomography. Proc Natl Acad Sci US 1985;82:584–8.

    Article  CAS  Google Scholar 

  16. Manger WM, Hoffmann BB. Heart imaging in the diagnosis of pheochromocytoma and assessment of catecholamine uptake: teaching editorial. J Nucl Med 1983;24:1194–96.

    PubMed  CAS  Google Scholar 

  17. Syrota A, Dormont D, Berg J, et al. C-11 ligand binding to adrenergic and muscarinic receptors of the human heart studied in vitro by PET. J Nucl Med 1983;24:P20 (abstract).

    Google Scholar 

  18. Dae M, Herre J, Botvinick E et al. Scintigraphic assessment of adrenergic innervation after myocardial infarction. Circulation 1986;74:II-297 (abstract).

    Google Scholar 

  19. Guiborg H, Schwaiger M, Rosenspire KC et al. 6-(F18)Fiuorometaraminol as marker for neuronal injury in “stunned” canine myocardium. J Nucl Med 1988;29:P938 (abstract).

    Google Scholar 

  20. Tillisch J, Brunken R, Schwaiger M et al. Reversibility of cardiac wall motion abnormalities predicted by positron emission tomography. N Engl J Med 1986;314:884–8.

    Article  PubMed  CAS  Google Scholar 

  21. Camici P, Araujo LI, Spinks T et al. Increased uptake of 18F-fluorodeoxyglucose in postischemic myocardium of patients with exercise-induced angina. Circulation 1986;74:81–8.

    Article  PubMed  CAS  Google Scholar 

  22. Schwaiger M, Brunken R, Grover-McKay M, et al. Regional myocardial metabolism in patients with acute myocardial infarction assessed by positron emission tomography. J Am Coll Cardiol 1986;8:800–8.

    Article  PubMed  CAS  Google Scholar 

  23. Brunken R, Schwaiger M, Grover-McKay M, Phelps ME, Tillisch J, Schelbert HR. Positron emission tomography detects tissue metabolic activity in myocardial segments with persistent thallium perfusion defects. J Am Coll Cardiol 1987;10:557–67.

    Article  PubMed  CAS  Google Scholar 

  24. Eisenberg JD, Sobel BE, Geltman EM. Differentiation of ischemic from nonischemic cardiomyopathy with positron emission tomography. Am J Cardiol 1987;59:1410–14.

    Article  PubMed  CAS  Google Scholar 

  25. Knabb RM, Rosamond TL, Fox KAA, Sobel BE, Bergmann SR. Enhancement of salvage of reperfused ischemic myocardium by diltiazem. J Am Coll Cardiol 1986;8:861–71.

    Article  PubMed  CAS  Google Scholar 

  26. Rapport van de Gezondheidsraad inzake advies Positron Emissie Tomografie, 1986.

    Google Scholar 

  27. Knoebel SB. Cardiology by the numbers and cost-containment. Am J Cardiol 1988;61:1112–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 E.E. van der Wall

About this chapter

Cite this chapter

van der Wall, E.E. (1992). Positron emission tomography in cardiology: From research device to clinical tool?. In: Nuclear Cardiology and Cardiac Magnetic Resonance. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2826-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2826-1_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-1780-7

  • Online ISBN: 978-94-011-2826-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics