Skip to main content

Biochemical and molecular genetic markers in biosystematic studies of forest trees

  • Chapter

Part of the book series: Forestry Sciences ((FOSC,volume 42))

Abstract

Biochemical and molecular markers have proven to be powerful tools for discerning biosystematic, biogeographic, and phylogenetic relationships. Biosystematic information can be important for guiding traditional breeding programs, gene transfer, interspecific hybridization, and gene conservation. A phylogenetic framework is usually necessary, but frequently ignored, for making valid statistical tests in studies of adaptive evolution. Several studies have indicated a strong correlation between biochemical “races” and traits important to growth and adaptation, suggesting that evolutionary legacy may affect genetic architecture of fitness traits — with consequences for seed transfer, breeding strategies, and tolerance of climate change. A number of methods for phylogenetic analysis exist, but differ in their assumptions. Use of an inappropriate method — such as a method that assumes constant rates of evolution when rates in fact vary — can lead to incorrect phylogenies. Because of their complexity, phylogenetic topologies are often difficult to determine unambiguously; estimates of statistical confidence should therefore accompany phylogenetic trees if they are to be regarded as providing new knowledge, or strong confirmation, of relationships. Molecular genetic markers are more expensive than biochemical markers such as allozymes and terpenes, but they provide increased accuracy and expanded scope of biosystematic inference, and facilitate statistical analyses of phylogenetic trees.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, R. and Simmons, D. 1987. A chemosystematic study of Callitris (Cupressaceae) in south-eastern Australia using volatile oils. Aust. For. Res. 17:113–125.

    Google Scholar 

  • Arbez, M., Bernard-Dagan, C. and Fillon, C. 1974. Intraspecific variability of Pinus nigra monoterpenes: analysis of the first results. Ann. Sci. For. 31: 57–70.

    Article  CAS  Google Scholar 

  • Archie, J. W. 1989. Homoplasy excess ratios: new indices for measuring levels of homoplasy in phylogenetic systematics and a critique of the consistency index. Syst. Zool. 38: 253–269.

    Article  Google Scholar 

  • Avise, J. C., Arnold, J., Ball, R. M, Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C. A. and Saunders, N. C. 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu. Rev. Ecol. Syst. 18: 489–522.

    Google Scholar 

  • Benfey, P. N. and Chua, N.-H. 1989. Regulated genes in transgenic plants. Science 244: 174–181.

    Article  PubMed  CAS  Google Scholar 

  • Bousquet, J., Cheliak, W. M. and Lalonde, M. 1987a. Genetic differentiation among 22 mature populations of green alder (Alnus crispa) in central Quebec. Can. J. For. Res. 17: 219–227.

    Article  CAS  Google Scholar 

  • Bousquet, J., Cheliak, W. M. and Lalonde, M. 1987b. Genetic diversity within and among 11 juvenile populations of green alder (Alnus crispa) in Canada. Physiol. Plant. 70: 311–318.

    Article  Google Scholar 

  • Bousquet, J., Cheliak, W. M. and Lalonde, M. 1988. Allozyme variation within and among mature populations of speckled alder (Alnus rugosa) and relationships with green alder (A. crispa). Am. J. Bot. 75: 1678–1686.

    Article  Google Scholar 

  • Bousquet, J., Cheliak, W. M., Wang, J. and Lalonde, M. 1990. Genetic divergence and introgressive hybridization between Alnus sinuata and A. crispa (Betulaceae). Plant Syst. Evol. 170: 107–124.

    Article  Google Scholar 

  • Bousquet, J., Girouard, E., Strobeck, C., Dancik, B. P. and Lalonde, M. 1989. Restriction fragment polymorphisms in the rDNA region among seven species of Alnus and Betula papyrifera. Plant Soil 118: 231–240.

    Article  CAS  Google Scholar 

  • Brotschol, J. V., Roberds, J. H. and Namkoong, G. 1986. Allozyme variation among North Carolina populations of Liriodendron tulipifera L. Silvae Genet. 35: 131 - 138.

    Google Scholar 

  • Bruce, W. B., Christensen, A. H., Klein, T., Fromm, M. and Quail, P. H. 1989. Photoregulation of a phytochrome gene from oat transferred into rice by particle bombardment. Proc. Natl. Acad. Sci. USA 86: 9692–9696.

    Article  PubMed  CAS  Google Scholar 

  • Burt, A. 1989. Comparative methods using phylogenetically independent contrasts, pp. 33–53. In: Harvey, P. H. and Partridge, L. (Eds) Oxford Surveys in Evolutionary Biology, Vol. 6. Oxford Univ. Press, England.

    Google Scholar 

  • Bush, R. M. and Smouse, P. E. 1992. Evidence for the adaptive significance of allozymes in forest trees. This issue, pp. 179–196.

    Google Scholar 

  • Cavalli-Sforza, L. L. and Edwards, A. W. F. 1967. Phylogenetic analyses: models and estimation procedures. Am. J. Human Genet. 19: 233–257.

    CAS  Google Scholar 

  • Clegg, M. T. 1989. Molecular diversity in plant populations, pp. 98–115. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L. and Weir, B. S. (Eds) Plant Population Genetics, Breeding, and Genetic Resources. Sinauer Associates, Inc. Publishers, Sunderland, Massachusetts.

    Google Scholar 

  • Coates, D. J. and Sokolowski, R. E. 1989. Geographic patterns of genetic diversity in Karri (Eucalyptus diversicolor F. Muell.). Aust. J. Bot. 37: 145–156.

    Article  Google Scholar 

  • Comps, B., Barriere, G., Merzeau, D. and Letouzey, J. 1987. La variabilité alloenzymatique des hêtraies dans les sous-domaines medio- et eu-atlantiques d’Europe. Can. J. For. Res. 17: 1043–1049.

    Article  Google Scholar 

  • Conkle, M. T. and Critchfield, W. B. 1988. Genetic variation and hybridization of ponderosa pine, pp. 27–43. In: Ponderosa Pine: The Species and its Management. Washington State Univ. Cooperative Extension, Pullman, WA.

    Google Scholar 

  • Conkle, M. T., Schiller, G. and Grunwald, C. 1988. Electrophoretic analysis of diversity and phylogeny of Pinus brutia and closely related taxa. Syst. Bot. 13: 411–424.

    Article  Google Scholar 

  • Copes, D. L. and Beckwith, R. C. 1977. Isoenzyme identification of Picea glauca, P. sitchensis, and P. lutzii populations. Bot. Gaz. 138: 512–521.

    Article  CAS  Google Scholar 

  • Critchfield, W. B. 1975. Interspecific hybridization in Pinus: a summary review, pp. 99–105 In: Fowler, D.P. and Yeatman, C. W. (Eds) Proc. 14th Meet., Canad. Tree Improvement Assoc., Part 2.

    Google Scholar 

  • Critchfield, W. B. 1984. Impact of the Pleistocene on the genetic structure of North American conifers, pp. 70–118. In: Lanner, R. M. (Ed) Proc. 8th North American Forest Biology Workshop, Dept. of Forest Resources, Utah State Univ., Logan, UT.

    Google Scholar 

  • Cwynar, L. C. and MacDonald, G. M. 1987. Geographical variation of lodgepole pine in relation to population history. Am. Nat. 129: 463–469.

    Article  Google Scholar 

  • Doolittle, R. F. (Ed) 1990. Methods in Enzymology, Vol. 183. Molecular Evolution: Computer Analysis of Protein and Nucleic Acid Sequences. Academic Press, San Diego, California, 736 pp.

    Google Scholar 

  • Duffield, J. W.1952. Relationships and species hybridization in the genus Pinus. Z. Forstgenetik 1(4): 93–97.

    Google Scholar 

  • Epperson, B. 1992. Spatial structure of genetic variation within forest trees. This issue, pp. 257–278.

    Google Scholar 

  • Erdtman, H., Kimland, B. and Norin, T. 1966. Pine phenolics and pine classification. Bot. Mag. Tokyo 79: 499–505.

    CAS  Google Scholar 

  • Evans, I. J., James, A. M. and Barnes, S. R. 1983. Organization and evolution of repeated DNA sequences in closely related plant genomes. J. Mol. Biol. 170: 803–826.

    Article  PubMed  CAS  Google Scholar 

  • Falconer, D. S. 1981. Introduction to Quantitative Genetics, Second Ed. Longman, NY.

    Google Scholar 

  • Farris, J. S. 1970. Methods for computing Wagner trees. Syst. Zool. 19: 83–92.

    Article  Google Scholar 

  • Farris, J. S. 1972. Estimating phylogenetic trees from distance matrices. Am. Nat. 106: 645–668.

    Article  Google Scholar 

  • Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368–376.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein, J.-. 1985a. Phylogenies and the comparative method. Am. Nat. 125: 1–15.

    Article  Google Scholar 

  • Felsenstein, J. -. 1985b. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.

    Article  Google Scholar 

  • Felsenstein, J. 1988. Phylogenies from molecular sequences: inference and reliability. Annu. Rev. Genet. 22: 521–565.

    Article  PubMed  CAS  Google Scholar 

  • Fins, L. and Seeb, L. W. 1986. Genetic variation in allozymes of western larch. Can. J. For. Res. 16: 1013–1018.

    Article  CAS  Google Scholar 

  • Fitch, W. M. 1976. Molecular evolutionary clocks, pp. 160–178. In: Ayala, F. J. (Eds) Molecular evolution. Sinauer Associates, Inc., Publishers, Sunderland, Massachusetts.

    Google Scholar 

  • Fitch, W. M. 1977. On the problem of discovering the most parsimonious tree. Am. Nat. 111:223–257.

    Article  Google Scholar 

  • Fitch, W. M. and Margoliash, E. 1967. Construction of phylogenetic trees. Science 155: 279–284.

    Article  PubMed  CAS  Google Scholar 

  • Forde, M. B. and Blight, M. M. 1964. Geographical variation in the turpentine of Bishop pine. New Zeal. J. Bot. 2: 44–52

    Article  Google Scholar 

  • Forrest, G. I. 1975. Polyphenol variation in Sitka spruce. Can. J. For. Res. 5: 26–37.

    Article  CAS  Google Scholar 

  • Forrest, G. I. 1980. Genotypic variation among native Scots pine populations in Scotland based on monoterpene analysis. Forestry 53: 101 - 128.

    Article  CAS  Google Scholar 

  • Forrest, G. I. 1982. Relationship of some European Scots pine populations to native Scottish woodlands based on monoterpene analysis. Forestry 55: 19–37.

    Article  CAS  Google Scholar 

  • Fowler, D. P. and Morris, R. W. 1977. Genetic diversity in red pine: evidence for low genic heterozygosity. Can. J. For. Res. 7: 343–347.

    Article  CAS  Google Scholar 

  • Furnier, G. R. and Adams, W. T. 1986. Geographic patterns of allozyme variation in Jeffrey pine. Am.J.Bot.73: 1009–1015.

    Article  Google Scholar 

  • Golenberg, E. M., Giannasi, D. E., Clegg, M. T., Smiley, C. J., Durbin, M., Henderson, D. and Zurawski, G. 1990. Chloroplast DNA sequence from a Miocene Magnolia species. Nature 344: 656–658.

    Article  PubMed  CAS  Google Scholar 

  • Gould, S. J. and Lewontin, R. C. 1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. Roy. Soc. Lond. B 205: 581–598.

    Article  CAS  Google Scholar 

  • Gullberg, U., Yazdani, R., Rudin, D. and Ryman, N. 1985. Allozyme variation in Scots pine (Pinus sylvestris L.) in Sweden. Silvae Genet. 34: 193–201.

    Google Scholar 

  • Guttman, S. I. and Weigt, L. A. 1989. Electrophoretic evidence of relationships among Quercus (oaks) of eastern North America. Can. J. Bot. 67: 339–351.

    Article  Google Scholar 

  • Hanover, J. W. 1992. Tree fitness as a function of terpene composition. This issue, pp. 159–178.

    Google Scholar 

  • Harry, D. E. 1984. Genetic structure of incense-cedar (Calocedrus decurrens) populations. Ph.D. thesis. Univ. of California, Berkeley, 163 pp.

    Google Scholar 

  • Holmquist, G. P. 1989. Evolution of chromosome bands: molecular ecology of noncoding DNA. J. Mol. Evol. 28: 469–486.

    Article  PubMed  CAS  Google Scholar 

  • Hopper, S. D. and Burgman, M. A. 1983. Cladistic and phenetic analyses of phylogenetic relationships among populations of Eucalyptus caesia. Aust. J. Bot. 31: 35–49.

    Article  Google Scholar 

  • Jacobs, B. F., Werth, C. R. and Guttman, S. I. 1984. Genetic relationships in Abies (fir) of eastern United States: an electrophoretic study. Can. J. Bot. 62: 609–616.

    Article  Google Scholar 

  • Jin, L. and Nei, M. 1990. Limitations of the evolutionary parsimony method of phylogenetic analysis. Mol. Biol. Evol. 7: 82–102.

    PubMed  CAS  Google Scholar 

  • Jukes, T. H. and Cantor, C. R. 1969. Evolution of protein molecules, pp. 121–132. In: Munro, H. N. (Ed) Mammalian Protein Metabolism. Academic Press, NY.

    Google Scholar 

  • Karalamangala, R. R. and Nickrent, D. L. 1989. An electrophoretic study of representatives of subgenus Diploxylon of Pinus. Can. J. Bot. 67: 1750–1759.

    Article  Google Scholar 

  • Keim, P., Paige, K. N., Whitham, T. G. and Lark, K. G. 1989. Genetic analysis of an interspecific hybrid swarm of Populus: Occurrence of unidirectional introgression. Genetics 123: 557–565.

    PubMed  CAS  Google Scholar 

  • Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111 - 120.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge Univ. Press, Cambridge, England.

    Book  Google Scholar 

  • Kinloch, B. B., Westfall, R. D. and Forrest, G. I. 1986. Caledonian Scots pine: origins and genetic structure. New Phytol. 104: 703–729.

    Article  Google Scholar 

  • Lagercrantz, U. and Ryman, N. 1990. Genetic structure of Norway spruce (Picea abies): Concordance of morphological and allozymic variation. Evolution 44: 38–53.

    Article  Google Scholar 

  • Lake, J. A. 1987. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol. Biol. Evol. 4: 167–191.

    PubMed  CAS  Google Scholar 

  • Lebreton, P. 1990. La chimiotaxonomie des Gymnospermes. Bull. Soc. Bot. France 137, Lett. Bot. (1) 35–46.

    Google Scholar 

  • Ledig, F. T. 1988. The conservation of diversity in forest trees. BioScience 38: 471–479.

    Article  Google Scholar 

  • Ledig, F. T. and Conkle, M. T. 1983. Gene diversity and genetic structure in a narrow endemic, Torrey pine (Pinus torreyana Parry ex Carr.). Evolution 37: 79–85.

    Article  CAS  Google Scholar 

  • Lester, D. T. 1974. Geographic variation in leaf and twig monoterpenes of balsam fir. Can. J. For. Res. 4: 55–60.

    Article  CAS  Google Scholar 

  • Lewontin, R. C. 1985. Population genetics. Annu. Rev. Genet. 19: 81 - 102.

    Article  PubMed  CAS  Google Scholar 

  • Li, P. and Adams, W. T. 1989. Range-wide patterns of allozyme variation in Douglas-fir (Pseudotsuga menziesii). Can. J. For. Res. 19: 149–161.

    Article  Google Scholar 

  • Li, P. and Adams, W. T. 1981. Simple method for constructing phylogenetic trees from distance matrices. Proc. Natl. Acad. Sci. USA. 78: 1085–1089.

    Article  PubMed  CAS  Google Scholar 

  • Li, P. and Adams, W. T. 1989. A statistical test of phylogenies estimated from sequence data. Mol. Biol. Evol. 6:424–435.

    PubMed  CAS  Google Scholar 

  • Li, W.-H.and Tanimura, M. 1987. The molecular clock runs more slowly in man than in apes and monkeys. Nature 326: 93–96.

    Article  PubMed  CAS  Google Scholar 

  • Li, W.-H., Wu, C.-I. and Luo, C.-C. 1985. A new method for estimating synonymous and nonsynonymous rates of nucleotide substituion considering the relative likelihood of nucleotide and codon changes. Mol. Biol. Evol. 2: 150– 174.

    PubMed  Google Scholar 

  • Manos, P. S. and Fairbrothers, D. E.1987. Allozyme variation in populations of six northeastern American red oaks (Fagaceae: Quercus subg. Erythrobalanus). Syst. Bot. 12:365–373.

    Article  Google Scholar 

  • Martin, P. G. and Dowd, J. M. 1984a. The study of plant phylogeny using amino acid sequences of ribulose-l,5-bisphosphate carboxylase. IV. Proteaceae and Fagaceae and the rate of evolution of the small subunit. Aust. J. Bot. 32: 291–299.

    Article  CAS  Google Scholar 

  • Martin, P. G. and Dowd, J. M. 1984b. The study of plant phylogeny using amino acid sequences of ribulose-1,5- bisphosphate carboxylase. V. Magnoliaceae, Polygonaceae and the concept of primitive- ness. Aust. J. Bot. 32: 301–309.

    Article  CAS  Google Scholar 

  • Martin, P. G. and Dowd, J. M. 1986. A phylogenetic tree for some monocotyledons and gymnosperms derived from protein sequences. Taxon 35: 469–475.

    Article  Google Scholar 

  • Martin, P. G. and Dowd, J. M.. 1988. A molecular evolutionary clock for angiosperms. Taxon 37: 364–377.

    Article  Google Scholar 

  • Merkle, S. A. and Adams, W. T. 1987. Patterns of allozyme variation within and among Douglas-fir breeding zones in southwest Oregon. Can. J. For. Res. 17: 402–407.

    Article  Google Scholar 

  • Merkle, S. A., Adams, W. T. and Campbell, R. K. 1988. Multivariate analysis of allozyme variation patterns in coastal Douglas-fir from southwest Oregon. Can. J. For. Res. 18: 181–187.

    Article  Google Scholar 

  • Millar, C. I. 1983. A steep cline in Pinus muricata. Evolution 37: 311–319.

    Article  Google Scholar 

  • Millar, C. I. 1989. Allozyme variation of bishop pine associated with pygmy-forest soils in northern California. Can. J. For. Res. 19: 870–879.

    Article  Google Scholar 

  • Millar, C. I. and Marshall, K. A. 1990. Allozyme variation of Port-Orford-Cedar (Chamaec- yparis lawsoniana): implications for genetic conservation. For. Sci. (in press)

    Google Scholar 

  • Millar, C. I. and Westfall, R. D. 1992. Allozyme markers in forest genetic conservation. This issue, pp. 347–371.

    Google Scholar 

  • Millar, C. I., Strauss, S. H., Conkle, M. T. and Westfall, R. D. 1988. Allozyme differentiation and biosystematics of the Californian closed-cone pines (Pinus subsect. Oocarpae). Syst. Bot. 13:351–370.

    Article  Google Scholar 

  • Mirov, N. T., Zavarin, E., Snajberk, K. and Costello, K. 1966. Further studies of turpentine composition of Pinus muricata in relation to its taxonomy. Phytochemistry 5: 343–355.

    Article  CAS  Google Scholar 

  • Moore, N. J. and Moran, G. F. 1989. Microgiographical patterns of allozyme variation in Casuarina cunninghamiana Miq. within and between the Murrumbidgee and coastal drainage systems. Aust. J. Bot. 37: 181 - 192.

    Article  Google Scholar 

  • Moran, G. F. and Adams, W. T. 1989. Microgeographical patterns of allozyme differentiation in Douglas-fir from southwest Oregon. For. Sci. 35: 3–15.

    Google Scholar 

  • Moran, G. F. and Bell, J. C. 1987. The origin and genetic diversity of Pinus radiata in Australia. Theor. Appl. Genet. 73: 616–622.

    Article  Google Scholar 

  • Moran, G. F., Bell, J. C. and Eldridge, K. G. 1988. The genetic structure and the conservation of the five natural populations of Pinus radiata. Can. J. For. Res. 18: 506–514.

    Article  Google Scholar 

  • Moran, G. F., Bell, J. C. and Turnbull, J. W. 1989. A cline in genetic diversity in river she-oak Casuarina cunninghamiana. Aust. J. Bot. 37:169–180.

    Article  Google Scholar 

  • Moran, G. F. and Hopper, S. D. 1983. Genetic diversity and the insular population structure of the rare granite rock species, Eucalyptus caesia Benth. Aust. J. Bot. 31: 161–172.

    Article  Google Scholar 

  • Mueller, L. D. and Ayala, F. J. 1982. Estimation and interpretation of genetic distance in empirical studies. Genet. Res. Camb. 40:127–137.

    Article  CAS  Google Scholar 

  • Neale, D. B. 1992. Potential for marker assisted selection in forest trees. This issue, pp. 391–407.

    Google Scholar 

  • Neale, D. B. and Sederoff, R. R. 1989. Paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in loblolly pine. Theor. Appl. Genet. 77: 212–216.

    Article  Google Scholar 

  • Nei, M. 1972. Genetic distance between populations. Am. Nat. 196: 283–292.

    Article  Google Scholar 

  • Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.

    PubMed  CAS  Google Scholar 

  • Nei, M.. 1987. Molecular Evolutionary Genetics. Columbia Univ. Press, New York. 512 pp.

    Google Scholar 

  • Nei, M. and Li, W.-H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA. 76: 5269–5273.

    Article  PubMed  CAS  Google Scholar 

  • Nei, M. and Tajima, F. 1983. Maximum likelihood estimation of the number of nucleotide substitutions from restriction site data. Genetics 105: 207–217.

    PubMed  CAS  Google Scholar 

  • Nei, M., Stephens, J. C. and Saitou, N. 1985. Methods for computing the standard errors of branching points in an evolutionary tree and their application to molecular data from humans and apes. Mol. Biol. Evol. 2: 66–85.

    PubMed  CAS  Google Scholar 

  • Nei, M. and Gojobori, T. 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous substitutions. Mol. Biol. Evol. 3: 418–426.

    PubMed  CAS  Google Scholar 

  • Nei, M. and Miller, J. C. 1990. A simple method for estimating average number of nucleotide substitutions within and between populations from restriction data. Genetics 125: 873–879.

    PubMed  CAS  Google Scholar 

  • Niebling, C. R. and Conkle, M. T. 1990. Diversity of Washoe pine and comparisons with allozymes of ponderosa pine races. Can. J. For. Res. 20: 298–308.

    Article  Google Scholar 

  • Nikolic, D. and Tucic, N. 1983. Isoenzyme variation within and among populations of European black pine (Pinus nigra Arnold). Silvae Genet. 32: 80–89.

    CAS  Google Scholar 

  • O’Reilly, G. J., Parker, W. H. and Cheliak, W. M. 1985. Isozyme differentiation of upland and lowland Picea mariana stands in northern Ontario. Silvae Genet. 34: 214–221.

    Google Scholar 

  • Pamilo, P. 1990. Statistical tests of phenograms based on genetic distances. Evolution 44: 689–697.

    Article  Google Scholar 

  • Perry, D. J. and Knowles, P. 1989. Allozyme variation in sugar maple at the northern limit of its range in Ontario, Canada. Can. J. For. Res. 19: 509–514.

    Article  Google Scholar 

  • Plessas, M. E. and Strauss, S. H. 1986. Allozyme differentiation among populations, stands, and cohorts in Monterey pine. Can. J. For. Res. 16: 1155–1164.

    Article  CAS  Google Scholar 

  • Pollack, J. C. and Dancik, B. P. 1985. Monoterpene and morphological variation and hybridization of Pinus contorta and P. banksiana in Alberta. Can. J. For. Res. 63: 201 -210.

    CAS  Google Scholar 

  • Price, R. A. and Lowenstein, J. M. 1989. An immunological comparison of the Sciadopityaceae, Taxodiaceae, and Cupressaceae. Syst. Bot. 14: 141 - 149.

    Article  Google Scholar 

  • Price, R. A., Olsen-Stojkovich, J. and Lowenstein, J. M. 1987. Relationships among the genera of Pinaceae: an immunological comparison. Syst. Bot. 12: 91–97.

    Article  Google Scholar 

  • Rajora, O. P. 1989. Genetic structure and identification of Populus deltoides clones based on allozymes. Genome 32: 440–448.

    Article  Google Scholar 

  • Rajora, O. P. 1990. Marker allozyme genes and alleles for differentiation of Populus deltoides, P. nigra, P. maximowiczii, and their interspecific hybrids. Can. J. Bot. 68: 990–998.

    Article  Google Scholar 

  • Rajora, O. P. and Zsuffa, L.1989. Multilocus genetic structure, characterization, and relationships of Populus x canadensis cultivars. Genome 32: 99–108.

    Article  CAS  Google Scholar 

  • Rehfeldt, J. 1984. Microevolution of conifers in the northern Rocky Mountains: a view from common gardens, pp. 132–146. In: Lanner, R. M. (Ed) Proc. 8th North American Forest Biology Workshop, Dept. of Forest Resources, Utah State Univ., Logan, UT.

    Google Scholar 

  • Ritland, K. and Clegg, M. T. 1987. Evolutionary analysis of plant DNA sequences. Am. Nat. 130: S74–S100.

    Article  CAS  Google Scholar 

  • Rogers, J. S. 1972. Measures of genetic similarity and genetic distance, pp. 145–153. In: Studies in Genetics VII. Univ. of Texas Publication 7213. Austin, Texas.

    Google Scholar 

  • Rose, M. R. and Doolittle, W. F. 1983. Molecular biological mechanisms of speciation. Science 220: 157–162.

    Article  PubMed  CAS  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for constructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    PubMed  CAS  Google Scholar 

  • Saitou, N. and Imanishi, T. 1989. Relative efficiencies of the Fitch-Margoliash, Maximum-Parsimony, Maximum-Likelihood, Minimum-Evolution, and Neighbor-joining methods of phylogenetic tree construction in obtaining the correct tree. Mol. Biol. Evol. 6: 514– 525.

    CAS  Google Scholar 

  • Saylor, L. C. and Smith, B. W. 1966. Meiotic irregularity in species and interspecific hybrids of Pinus. Am. J. Bot. 53: 453–468.

    Article  Google Scholar 

  • Schiller, G., Conkle, M. T. and Grunwald, C. 1986. Local differentiation among Mediterranean populations of Aleppo pine in their isoenzymes. Silvae Genet. 35: 11 - 19.

    Google Scholar 

  • Schmid, C. W. and Jelinek, W. R. 1982. The Alu family of dispersed repetitive sequences. Science 216: 1065–1070.

    Article  PubMed  CAS  Google Scholar 

  • Schnabel, A. and Hamrick, J. L. 1990. Comparative analysis of population genetic structure in Quercus macrocarpa and Q. gambelii (Fagaceae). Syst. Bot. 15: 240–251.

    Article  Google Scholar 

  • Selander, R. K. and Whittam, T. S. 1983. Protein polymorphism and the genetic structure of populations, pp. 89–114. In: Nei. M. and Koehn, R. K. (Eds) Evolution of Genes and Proteins. Sinauer Associates, Inc. Publishers, Sundlander, Massachusetts.

    Google Scholar 

  • Sessions, S. K. and Larson, A. 1987. Developmental correlates of genome size in plethodontid salamanders and their implications for genome evolution. Evolution 41: 1239– 1251.

    Article  Google Scholar 

  • Sidow, A. and Wilson, A. C. 1990. Compositional statistics: an improvement of evolutionary parsimony and its application to deep branches in the tree of life. J. Mol. Evol. 31:51–68.

    Article  PubMed  CAS  Google Scholar 

  • Sigurgeirsson, A. and Szmidt, A. 1988. Chloroplast DNA variation among North-American Picea species, and its phylogenetic implications, pp. 49–65. In: Proc. of the Frans Kempe Symposium, Umea, Sweden.

    Google Scholar 

  • Smith, R. H. 1977. Monoterpenes of ponderosa pine xylem resin in western United States. USDA For. Serv., Pacific Southwest Forest and Range Exp. Sta., Berkeley, California. Tech. Bull. 1532.

    Google Scholar 

  • Smouse, P. E. and Neel, J. V. 1977. Multivariate analysis of gametic disequilibrium in the Yanomama. Genetics 85: 733–752.

    PubMed  CAS  Google Scholar 

  • Sneath, P. H. A. and Sokal, R. R.1973. Numerical Taxonomy. W.H. Freeman, San Francisco.

    Google Scholar 

  • Sorensen, F. C, Campbell, R. K. and Franklin, J. F. 1990. Geographic variation in growth and phenology of seedlings of the Abies proceral A. magnifica complex. Forest Ecol. Manage. 36: 205–232.

    Article  Google Scholar 

  • Sourdis, J. and Nei, M.1988. Relative efficiencies of the Maximum Parsimony and Distance-Matrix methods in obtaining the correct phylogenetic tree. Mol. Biol. Evol. 5: 298–311.

    PubMed  CAS  Google Scholar 

  • Steinhoff, R. J., Joyce, D. G. and Fins, L. 1983. Isozyme variation in Pinus monticola. Can. J. For. Res. 13: 1122–1132.

    Article  Google Scholar 

  • Strauss, S. H. and Doerksen, A. H. 1990. Restriction fragment analysis of pine phylogeny. Evolution 44: 1081–1096.

    Article  CAS  Google Scholar 

  • Strauss, S. H., Doerksen, A. H. and Byrne, J. R. 1990. Evolutionary relationships of Douglas-fir anditsrelatives(genus Pseudotsuga) from DNArestriction fragment analysis. Can. J. Bot. 68: 1052–1510.

    Article  Google Scholar 

  • Strauss, S. H., Neale, D. B. and Wagner, D. B. 1989. Genetics of the chloroplast in conifers. J. Forestry 87: 11–17.

    Google Scholar 

  • Surles, S. E., Hamrick, J. L. and Bongarten, B. C. 1989. Allozyme variation in black locust (Robinia pseudoacacia). Can. J. For. Res. 19: 471–479.

    Article  Google Scholar 

  • Swofford, D. L.1990. PAUP-Phylogenetic analysis using parsimony. Illinois Natural History Survey, Champaign, IL.

    Google Scholar 

  • Sytsma, K. J. 1990. DNA and morphology: inference of plant phylogeny. Trends Ecol. Evol. 5: 104–110

    Article  Google Scholar 

  • Sytsma, K. J. and Schaal, B. A. 1985a. Genetic variation, differentiation, and evolution in a species complex of tropical shrubs based on isozymic data. Evolution 39: 582–593.

    Article  Google Scholar 

  • Sytsma, K. J. and Schaal, B. A. 1985b. Phylogenetics of the Lisianthius skinneri (Gentianaceae) species complex in Panama utilizing DNA restriction fragment analysis. Evolution 39: 594–608.

    Article  CAS  Google Scholar 

  • Szmidt, A. E., El-Kassaby, Y. A., Sigurgeirsson, A., Aldèn, T., Lindgren, D. and Hällgren, J.-E. 1988a. Classifying seedlots of Picea sitchensis and P. glauca in zones of introgression using restriction analysis of choloroplast DNA. Theor. Appl. Genet. 76: 841–845.

    Article  CAS  Google Scholar 

  • Szmidt, A. E., Sigurgeirsson, A., Wang, X.-R., Hallgren, J.-E. and Lindgren, D. 1988b. Genetic relationships among Pinus species based on chloroplast DNA polymorphism, pp. 33–47. In: Proc. of the Frans Kempe Symposium in Umea, Sweden.

    Google Scholar 

  • Tajima, F. and Nei, M. 1984. Estimation of evolutionary distance between nucleotide sequences. Mol. Biol. Evol. 1: 269–285.

    PubMed  CAS  Google Scholar 

  • Thielges, B. A. 1969. A chromatographic investigation of interspecific relationships in Pinus (Subsection Sylvestres). Am. J. Bot. 56: 406–409.

    Article  Google Scholar 

  • von Rudloff, E. and Lapp, M. S. 1987. Chemosystematic studies in the genus Pinus. VI. General survey of the leaf oil terpene composition in lodgepole pine. Can. J. For. Res. 17: 1013–1025.

    Article  Google Scholar 

  • von Rudloff, E. and Rehfeldt, G. E. 1980. Chemosystematic studies in the genus Pseudotsuga. IV. Inheritance and geographical variation in the leaf oil terpenes of Douglas-fir from the Pacific Northwest. Can. J. Bot. 58: 546–556.

    Article  Google Scholar 

  • Wagner, D. B. Furnier, G. R., Saghai-Maroof, M. A., Williams, S. M., Dancik, B. P. and Allard, R. W. 1987. Chloroplast DNA polymorphisms in lodgepole and jack pines and their hybrids. Proc. Natl. Acad. Sci. USA 84: 2097–2100.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X.-R. and Szmidt, A. E. 1990. Evolutionary analysis of Pinus densata [Masters], a putative Tertiary hybrid. II. A study using species-specific chloroplast DNA markers. Theor. Appl. Genet. (in press).

    Google Scholar 

  • Wang, X.-R., Szmidt, A. E., Lewandowski, A. and Wang, Z.-R. 1990. Evolutionary analysis of Pinus densata Masters, a putative Tertiary hybrid. I. Allozyme variation. Theor. Appl. Genet. (in press).

    Google Scholar 

  • Wanntorp, H.-E., Brooks, D. R., Nilsson, T., Nylin, S., Ronquist, F., Stearns, S. C. and Wedell, N. 1990. Phylogenetic approaches in ecology. Oikos 57: 119–132.

    Article  Google Scholar 

  • Weber, J. C. and Stettler R. F. 1981. Isoenzyme variation among ten populations of Populus trichocarpa Torr. et Gray in the Pacific Northwest. Silvae Genet. 30: 82–87.

    CAS  Google Scholar 

  • Wellendorf, H. and Simonsen, V. 1979. A chemotaxonomic study in Picea with isoenzymes in the seed endosperm, pp. 182–197. In: Proceedings of the Conference on Biochemical Genetics of Forest Trees, Umea, Sweden.

    Google Scholar 

  • Wendel, J. F. and Parks, C. R. 1985. Genetic diversity and population structure in Camellia japonica L. (Theaceae). Am. J. Bot. 72: 52–65.

    Article  Google Scholar 

  • Westfall, R. D. 1992. Allozyme markers in breeding zone designation. This issue, pp. 279–300.

    Google Scholar 

  • Wheeler, N. C. and Guries, R. P.1982a. Population structure, genic diversity,and morphological variation in Pinus contorta Dougl. Can. J. For. Res. 12: 595–606.

    Article  Google Scholar 

  • Wheeler, N. C. and Guries, R. P. 1982b. Biogeography of lodgepole pine. Can. J. Bot. 60: 1805–1814.

    Article  Google Scholar 

  • Wheeler, N. C. and Guries, R. P. 1987. A quantitative measure of introgression between lodgepole and jack pines. Can. J. Bot. 65: 1876–1885.

    Article  Google Scholar 

  • Wheeler, N. C., Guries, R. P. and O’Malley, D. M. 1983. Biosystematics of the genus Pinus, Subsection Contortae. Biochem. Syst. Ecol. 11: 333–340.

    Article  Google Scholar 

  • Wiley, E. O. 1981. Phylogenetics: The Theory and Practice of Phylogenetic Systematics. John Wiley and Sons, New York, 305 pp.

    Google Scholar 

  • Williams, P. L. and Fitch, W. M. 1990. Phylogeny determination using dynamically weighted parsimony method. In: Doolittle, R. F. (Ed) Molecular Evolution: Computer Analysis of Protein and Nucleic Acid Sequences. Methods Enzymol. 183: 615–626.

    Google Scholar 

  • Wilson, M. A., Gaut, B. and Clegg, M. T. 1990. Chloroplast DNA evolves slowly in the palm family (Arecaceae). Mol. Biol. Evol. 7: 303–314.

    PubMed  CAS  Google Scholar 

  • Wu, C.-I. and Li, W.-H. 1985. Evidence for higher rates of nucleotide substitution in rodents than in man. Proc. Natl. Acad. Sci. USA. 82: 1741 - 1745.

    Article  PubMed  CAS  Google Scholar 

  • Yacine, A. and Lumaret, R. 1989. Genetic diversity in holm-oak (Quercus ilex L.): insight from several enzyme markers. Silvae Genet. 38: 140–148.

    Google Scholar 

  • Yeh, F. C. 1988. Isozyme variation of Thuja plicata (Cupressaceae) in British Columbia. Biochem. Syst. Ecol. 16: 373–377.

    Article  Google Scholar 

  • Yeh, F. C. and Arnott, J. T. 1986. Electrophoretic and morphological differentiation of Picea sitchensis, Picea glauca, and their hybrids. Can. J. For. Res. 16: 791–798.

    Article  Google Scholar 

  • Yeh, F. C, Cheliak, W. M., Dancik, B. P., Illingworth, K., Trust, D. C. and Pryhitka, B. A. 1985. Population differentiation in lodgepole pine,Pinus contorta spp.latifolia: a discriminant analysis of allozyme variation. Can. J. Genet. Cytol. 27: 210–218.

    Google Scholar 

  • Yeh, F. C, Khalil, M. A. K., El-Kassaby, Y. A. and Trust, D. C. 1986. Allozyme variation in Picea mariana from Newfoundland: genetic diversity, population structure, and analysis of differentiation. Can. J. For. Res. 16: 713–720.

    Article  CAS  Google Scholar 

  • Zavarin, E. and Snajberk, K. 1973. Geographic variability of monoterpenes from cortex of Pseudotsuga menziesii. Pure and Appl. Chem. 34: 411–434.

    Article  CAS  Google Scholar 

  • Zimmer, E. A., Hamby, K. R., Arnold. M. L., Leblanc, D. A. and Theriot, E. C. 1989. Ribosomal RNA phylogenies and flowering plant evolution. In: Fernholm, B., Bremer, and Jörnvall, K. (Eds) The Hierarchy of Life. Elsevier, NY, pp. 205–214.

    Google Scholar 

  • Zinkel, D. F. 1977. Pine resin acids as chemotaxonomic and genetic indicators, pp. 53–56. In: TAPPI Conference Papers, Forest Biology Wood Chemistry Conference, Madison, WI.

    Google Scholar 

  • Zuckerkandl, E.1986. Polite DNA: functional density and functional compatibility in genomes. J. Mol. Evol. 24: 12–27.

    Article  PubMed  CAS  Google Scholar 

  • Zuckerkandl, E. and Pauling, L. 1965. Molecules as documents of evolutionary history. J. Theor. Biol. 8: 357–366.

    Article  PubMed  CAS  Google Scholar 

  • Zurawski, G. and Clegg, M. T. 1987. Evolution of higher plant chloroplast encoded genes; implications for structure-function and phylogenetic studies. Annu. Rev. Plant Physiol. 38:391–418.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Strauss, S.H., Bousquet, J., Hipkins, V.D., Hong, YP. (1992). Biochemical and molecular genetic markers in biosystematic studies of forest trees. In: Adams, W.T., Strauss, S.H., Copes, D.L., Griffin, A.R. (eds) Population Genetics of Forest Trees. Forestry Sciences, vol 42. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2815-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2815-5_8

  • Received:

  • Accepted:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5251-1

  • Online ISBN: 978-94-011-2815-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics