Advertisement

Patterns of genetic diversity in Australian tree species

  • G. F. Moran
Part of the Forestry Sciences book series (FOSC, volume 42)

Abstract

Australia has a large endemic tree flora with many of the genera largely confined to the southern hemisphere. The two dominant genera are Eucalyptus and Acacia. Isozyme studies of patterns of genetic diversity in populations of these species are reviewed. Generally, Australian tree species have high levels of allozyme variation with most of this variation within rather than between populations. The species with the most genetic differentiation between populations are those with regional distributions but with small disjunct populations. Many of the species show no discernible relationship between current population sizes and genetic diversity. A number of species with widespread distributions exhibit similar clusters of populations both on isozymes and other traits. Such clusters often correspond to large geographic regions. This pattern suggests that preliminary low intensity isozyme surveys could help to define more efficient sampling strategies for intensive seed collections and subsequent fieldtrials of many tree species.

Key words

isozymes conservation geographic range domestication breeding systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barlow, B. A. 1981. The Australian flora: Its origin and evolution, pp. 25–75. In: George,A. S. (Ed) Flora of Australia, Vol. 1. Australian Government Publishing Service,Canberra.Google Scholar
  2. Boland, D. J. and Dunn, A. 1985. Geographic variation in alpine ash (Eucalyptus delegatensis R. T. Baker). Aust. For. Res. 15: 155–171.Google Scholar
  3. Boland, D. J., Brooker, M. I. H., Chippendale, G. M., Hall, N., Hyland, B. P. M., Johnston,R. D., Kleinig, D. A. and Turner, J. D. 1984. Forest Trees of Australia. Thomas Nelson and CSIRO, Melbourne.Google Scholar
  4. Bridgewater, P. B. 1987. The present Australian environment – terrestrial and freshwater, pp. 69–100. In: Dyne, G. R. and Walton, D. W. (Eds) Fauna of Australia. General Articles. Vol 1 A. Australian Government Publishing Service, Canberra.Google Scholar
  5. Brown, A. H. D., Barrett, S. C. H. and Moran, G. F. 1985. Mating system estimation in forest trees: models, methods and meanings, pp. 32–49. In: Gregorius, H. R. (Ed) Population Genetics in Forestry. Springer–Verlag, Berlin.CrossRefGoogle Scholar
  6. Brown, A. H. D., Matheson, A. C. and Eldridge, K. G. 1975. Estimation of the mating system of Eucalyptus obliqua L’Herit. by using allozyme polymorphisms. Aust. J. Bot. 23: 931–949.CrossRefGoogle Scholar
  7. Burgess, I. P. and Bell, J. C. 1983. Comparative morphology and allozyme frequencies of Eucalyptus grandis Hill ex Maiden and E. saligna Sm. 1983. Aust. For Res. 13: 133–149.Google Scholar
  8. Carthew, S. M., Ayre, D. J. and Whelan, R. J. 1988. High levels of outcrossing in populations of Banksia spinulosa R.Br and Banksia paludosa Smith. Aust. J. Bot. 36: 217–223.CrossRefGoogle Scholar
  9. Coates, D. J. 1988. Genetic diversity and population genetic structure in the rare Chittering grass wattle Acacia anomala. Aust. J. Bot. 36: 273–286.CrossRefGoogle Scholar
  10. Coates, D. J. and Sokolowski, R. E. 1989. Geographic patterns of genetic diversity in karri (Eucalyptus diversicolor). Aust. J. Bot. 37: 145–156.CrossRefGoogle Scholar
  11. Cook, I. 1989. Morphological and isozyme variation in Eucalyptus nitens. M.Sc. Thesis, Faculty of Agriculture and Forestry, University of Melbourne.Google Scholar
  12. El–Lakany, M. H. 1990. Provenance trials of Casuarina glauca and C. cunninghamiana in Egypt, pp. 12–22. In: El–Lakany, M. H. and Turnbull, J. W. (Eds) Second International Casuarina Workshop, IUFRO, Cairo.Google Scholar
  13. Galloway, R. W. and Kemp, E. M. 1980. Late cainozoic environments in Australia, pp. 51 –80. In: Keast, A. (Ed). Ecological Biogeography of Australia. Junk, The Hague.Google Scholar
  14. Hamrick, J. L. and Godt, M. J. W. 1990. Allozyme diversity in plant species, pp. 44–64. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L. and Weir, B. S. (Eds) Plant Population Genetics, Breeding and Genetic Resources. Sinauer, Sunderland.Google Scholar
  15. Harwood, C. E., Bell, J. C. and Moran, G. F. 1991. Isozyme studies and genetic variation in Grevillea robusta A. Cunn. pp. Proceedings, ICRAF/CSIRO International Workshop on Grevillea robusta. Nairobi, Kenya, August 1990.Google Scholar
  16. Kenrick, J. and Knox, R. B. 1989. Quantitative analysis of self–incompatibility in trees of seven species of Acacia. J. Hered. 80: 240–245.Google Scholar
  17. Lande, R. and Barrowclough, G. F. 1987. Effective population size, genetic variation and their use in population management, pp. 69–124. In: Soule, M. (Ed) Viable Populations for Conservation. CUP, Cambridge.Google Scholar
  18. Loveless, M. D. and Hamrick, J. L. 1984. Ecological determinants of genetic structure in plant populations. Ann. Rev. Ecol. Syst. 15: 65–95.CrossRefGoogle Scholar
  19. Maslin, B. R. and Pedley, L. 1982. The distribution of Acacia (Leguminosae: Mimosoideae) in Australia. Part 1. Species distribution maps. WA Herbarium Research Notes 6: 1–128.Google Scholar
  20. Moran, G. F.1992. Spatial variation in the genetic structure and mating system of Eucalyptus delegatensis. Silvae Genetica (in press).Google Scholar
  21. Moran, G. F. and Bell, J. C. 1983. Eucalyptus, pp. 423–441. In: Tanksley, S. D. and Orton, T. J. (Eds) Isozymes in Plant Genetics and Breeding, Part B. Elsevier, Amsterdam.Google Scholar
  22. Moran, G. F. and Hopper, S. D. 1983. Genetic diversity and insular population structure of the rare granite rock species Eucalyptus caesia Benth. Aust. J. Bot. 31: 161 – 172.CrossRefGoogle Scholar
  23. Moran, G. F. and Hopper, S. D. 1987. Conservation of the genetic resources of rare and widespread eucalypts in remnant vegetation, pp. 151 – 162. In: Saunders, D. A., Arnold, G. W., Burbidge, A. A. and Hopkins, A. J. M. (Eds) Nature Conservation: The Role of Remnants of Native Vegetation. Surrey Beatty and Sons: NSW.Google Scholar
  24. Moran, G. F., Bell, J. C. and Turnbull, J. W. 1989c. A cline in genetic diversity in river sheoak Casuarina cunninghamiana. Aust. J. Bot. 37: 169–180.CrossRefGoogle Scholar
  25. Moran, G. F., Bell, J. C. and Prober, S. 1990a. The utility of isozymes in the systematics of some Australian tree groups. Aust. Syst. Bot. 3: 47–57.CrossRefGoogle Scholar
  26. Moran, G. F., Forrester, R. I. and Rout, A. R.1990b. Early growth of Eucalyptus delegatensis provenances in four field trials in south–eastern Australia. NZ. J. For. Science 20: 148–161.Google Scholar
  27. Moran, G. F., Muona, O. and Bell, J. C. 1989a. Acacia mangium: a tropical forest tree of the coastal lowlands with low genetic diversity. Evolution 43: 231–235.CrossRefGoogle Scholar
  28. Moran, G. F., Muona, O. and Bell, J. C. 1989b. Breeding systems and genetic diversity in Acacia auriculiformis and A. crassicarpa. Biotropica 21: 250–256.CrossRefGoogle Scholar
  29. Muona, O. 1990. Population genetics in forest tree improvement. pp. 282–298. In: Brown, A. H. D., Clegg, M. T., Kahler A. L., and Weir, B. S. (Eds) Plant Population Genetics, Breeding and Genetic Resources. Sinauer, Sunderland, Massachusetts.Google Scholar
  30. Muona, O., Moran, G. F. and Bell, J. C. 1991. Hierarchical patterns of correlated mating in Acacia melanoxylon. Genetics 127:619–626.PubMedGoogle Scholar
  31. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Nat. Acad. Sci. 70:3321–3.PubMedCrossRefGoogle Scholar
  32. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.PubMedGoogle Scholar
  33. Nelson, E. C. 1981. Phytogeography of southern Australia, pp. 733–760 In: Keast, A. (Ed) Ecological Biogeography of Australia. W. Junk, The Hague.Google Scholar
  34. Pederick, L. A. 1979. Natural variation in shining gum (Eucalyptus nitens) Aust. For. Res. 9:41–63.Google Scholar
  35. Peters, G. B., Lonie J. S. and Moran. G. F. 1990. The breeding system, genetic diversity and pollen sterility in Eucalyptus pulverulenta, a rare species with small disjunct populations. Aust J. Bot. 38: 559–570.CrossRefGoogle Scholar
  36. Phillips, M. A. and Brown, A. H. D. 1977. Mating system and hybridity in Eucalyptus pauciflora. Aust. J. Biol. Sci. 30: 337–344.Google Scholar
  37. Prober, S., Bell, J. C. and Moran, G. F. 1990a. A phylogenetic approach to understanding rarity in three ‘green ash’ eucalypts (Myrtaceae). Plant Syst. Evol. 172: 99–118.CrossRefGoogle Scholar
  38. Prober, S. M., Tompkins, C., Moran, G. F. and Bell, J. C. 1990b. The conservation genetics of Eucalyptus paliformis L. Johnson et Blaxell and E. panifolia Cambage, two rare species from south–eastern Australia. Aust. J. Bot. 38: 79–95.CrossRefGoogle Scholar
  39. Sampson, J. F. 1988. The Population Genetic Structure of Eucalyptus rhodantha Blakely and Steedman and its allies Eucalyptus crucis Maiden and Eucalyptus lane–poolei Maiden. Ph.D. Thesis, University of Western Australia.Google Scholar
  40. Sampson, J. F., Hopper, S. D. and James, S. H. 1988. Genetic diversity and the conservation of Eucalyptus crucis. Maiden. Aust. J. Bot. 36: 447–460.Google Scholar
  41. Sampson, J. F., Hopper, S. D. and James, S. H. 1989. The mating system and populations genetic structure in a bird–pollinated mallee, Eucalyptus rhodantha. Hered. 63: 383–393.CrossRefGoogle Scholar
  42. Slatkin, M. 1985. Rare alleles as indicators of gene flow. Evolution 39: 53–65.CrossRefGoogle Scholar
  43. Slatkin, M. 1987. Gene flow and the geographic structure of natural populations. Science 236: 787–792.PubMedCrossRefGoogle Scholar
  44. Turnbull, J. W. 1980. Geographic variation in Eucalyptus cloeziana. Ph. D. Thesis, ANU, Canberra.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • G. F. Moran
    • 1
  1. 1.Division of Forestry and Forest ProductsCSIROCanberraAustralia

Personalised recommendations