Advertisement

The use of electrophoretic markers in seed orchard research

  • N. C. Wheeler
  • K. S. Jech
Part of the Forestry Sciences book series (FOSC, volume 42)

Abstract

Biochemical markers are ideally suited for addressing questions concerning genetic or parental identity. For production seed orchards, such questions are common as a consequence of the uncertainty of paternity in non-controlled cross situations. During the last decade, electrophoretic procedures have been used extensively to investigate issues such as:
  • clonal identification,

  • pollen contamination levels,

  • mating systems,

  • supplemental mass pollination (SMP) verification,

  • patterns of gene flow, and

  • levels of pollen competition.

A number of patterns have emerged from this work. Most notable, contamination rates are disturbingly high, clonal phenology and pollen application methodology influence SMP success, and phenology and proximity are important in determining paternal success. Results are discussed with reference to orchard management prescriptions.

Key words

allozyme isozymes mating systems paternity analyses pollen contamination supplemental mass pollination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, W. T. 1981a. Applying isozyme analyses in tree-breeding programs. In: M. T.Conkle (Ed), Proc. Symp. Isozymes North Am. Forest Trees and Forest Insects,Berkeley, CA, USDA Forest Serv. Gen. Tech. Rep. PSW-48, pp. 60–64.Google Scholar
  2. Adams, W. T.1981b. Population genetics and gene conservation in Pacific Northwest conifers. In: Scudder, G. G. E. and Reveal, J. L. (Eds) Evolution Today, Proc. Sec. Int. Congr.System. and Evol. Biol., Hunt Institute for Botanical Documentation, Pittsburg, pp.401–415.Google Scholar
  3. Adams, W. T.1983. Application of isozymes in tree breeding. In: Tanskley S. D. and Orton, T. J. (Eds) Isozymes in Plant Genetics and Breeding. Elsevier Science Publishers, Amsterdam, Part A, pp. 381–400.Google Scholar
  4. Adams, W. T. and Birkes, D. S. 1989. Estimating mating patterns in forest tree populations.In: Proc. International Workshop on plant biology, biochemical markers in population genetics of forest trees. Inst. for Agroforestry of the National Res. Council of Italy (CNR). Porano-Orvieto, Italy, Oct. 1988.Google Scholar
  5. Adams, W. T. and Joly, R. J. 1980. Allozyme studies in loblolly pine seed orchards: clonal variation and frequency of progeny due to self-fertilization. Silvae Genetica 29(1): 1–4.Google Scholar
  6. Adams, W. T., Neale, D. B. and Loopstra, C. A. 1988. Verifying control crosses in conifer tree improvement programs. Silvae Genetica 37(3–4): 147–152.Google Scholar
  7. Altukov, Yv. P., Dukharev, V. A. and Zhirotovskii, L. A. 1983. Selection against rare electrophoretic protein variants and the rate of spontaneous mutability in populations. Genetika 19(2): 264–276.Google Scholar
  8. Altukov, Yv. P., Krutovskii, K. V., Gafarou, N. I., Dukharev, V. A., and Morozov, G. P. 1986. Allozyme variability in a natural population of Norway Spruce (Picea abies (L.) Karst). I. Polymorphism systems and mechanisms of their genetic control. Genetika 22(8):2135–2151.Google Scholar
  9. Apsit, V. J., Nakamura, R. R. and Wheeler, N. C. 1989. Differential male reproductive success in Douglas-fir. Theor. Appl. Genet. 77: 681–684.CrossRefGoogle Scholar
  10. Barrett, J. D., Knowles, P. H. and Cheliak, W. M. 1987. The mating system in a black spruce clonal seed orchard. Can. J. For. Res. 17(5): 379–382.CrossRefGoogle Scholar
  11. Bergmann, F. 1987. Characterization of multiclonal aspen cultivars using isozyme electrophoresis. For. Ecol. and Manage. 22(1–2): 167–172.CrossRefGoogle Scholar
  12. Bernatsky, R. and Tanksley, S. D. 1989. Restriction fragments as molecular markers for germ-plasm analysis and utilisation. In: Brown A. D. H., Marshall D. R., Frankel O. H. and Williams J. T. (Eds) The Use of Plant Genetic Resources. Cambridge University Press, Cambridge, 353–362.Google Scholar
  13. Blush, T. 1987. An operational trial of supplemental mass pollination in a loblolly pine seed orchard. In: Proc. 20th South. For. Tree Improve. Conf., Charleston, SC.Google Scholar
  14. Bridgwater, F., Blush, T., and Wheeler, N. C. 1990. Supplemental mass pollination. In: Proc. Pollen management workshop, Southern Res. Inf. Exchange Group Meeting, Macon, Georgia, July 18-19.Google Scholar
  15. Bongarten, B. C., Wheeler, N. C. and Jech, K. S. 1985. Isozyme heterozygosity as a selection criterion for yield improvement in Douglas-fir. In: New ways in forest genetics. Proc. 19th Can. Tree Improv. Assoc., Quebec City, Quebec, Canada, pp. 121 –127.Google Scholar
  16. Bush, R. M., Smouse, P. E. and Ledig, F. T. 1987. The fitness consequences of mutiplelocus heterozygosity: the relationship between heterozygosity and growth rate in pitch pine (Pinus ridida Mill.). Evolution 41: 787–798.CrossRefGoogle Scholar
  17. Cheliak, W. M., Morgan, K. ,Strobeck, C., Yeh, F. C. H. and Dancik, B. P. 1983. Estimation of mating system parameters in plant populations using the EM algorithm. Theor. Appli. Genet. 65: 157–161.CrossRefGoogle Scholar
  18. Cheliak, W. M. and Pitel, J. A. 1984. Genetic control of allozyme variants in mature tissues of white spruce trees. J. of Heredity 75: 34–40.Google Scholar
  19. Cheliak, W. M., Skroppa, T. and Pitel, J. A. 1987a. Genetics of the polycross. I. Experimental results from Norway spruce. Theor. Appli. Genet. 73: 321–329.Google Scholar
  20. Cheliak, W. M, Yeh, F. C. H. and Pitel, J. A. 1987b. Use of electrophoresis in tree improvement programs. For. Chron. 63: 89–96.Google Scholar
  21. Chung, M. S. 1984. Allozyme variation of Pinus rigida Mill. in an Fl-hybrid seed orchard and estimation of the proportion of Fl-hybrid seeds by allozyme analysis. J. Korean For. Society 66: 109–117.Google Scholar
  22. Conkle, M. T. 1971. Inheritance of alcohol dehydrogenase and leucine aminopeptidase isozymes in knobcone pine. For. Science 17(2): 190–194.Google Scholar
  23. Conkle, M. T. 1972. Analyzing genetic diversity in conifersisozyme resolution by starch gel electrophoresis. USDA For. Serv. Res. Note, PSW-264 pp. 1–5.Google Scholar
  24. Conkle, M. T. and Adams, W. T. 1977. Use of isozyme techniques in forest genetic research. In: Proc. 14th South. For. Tree Improve. Conf. Gainesville, FL. pp. 219–226.Google Scholar
  25. Copes, D. L. 1978. Isoenzyme activities differ in compatible and incompatible Douglas-fir graft unions. For. Science 24: 297–303.Google Scholar
  26. Devlin, B., Roeder. K. and Ellstrand, N. C. 1988. Fractional paternity assignment: theoretical development and comparison to other methods. Theor. Appli. Genet. 76: 369–380.Google Scholar
  27. Ducharev, V. A., Romanovskij, H.G. and Rjabokon, S.M. 1987. [Heterozygosity and seed production in Scots pine. Lesovedenije 22(2): 87–89.Google Scholar
  28. El-Kassaby, Y. A., Fashler, A. M. K. and Sziklai, O. 1984. Reproductive phenology and its impact on genetically improved seed production in a Douglas-fir seed orchard. Silvae Genet. 33: 120–125.Google Scholar
  29. El-Kassaby, Y. A., Parkinsson, J. and Devitt, W. J. B. 1986. The effect of crown segment on the mating system in a Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seed orchard. Silvae Genetica 35: 149–155.Google Scholar
  30. El-Kassaby, Y. A. and Ritland, K. 1986. Low levels of pollen contamination in a Douglasfir seed orchard as detected by allozyme markers. Silvae Genetica 35: (5–6)224–229.Google Scholar
  31. El-Kassaby, Y. A., Ritland, K., Fashler, A. M. K. and Devitt, W. J. B. 1988. The role of reproductive phenology upon the mating system of a Douglas-fir seed orchard. Silvae Genetica 37(2): 76–82.Google Scholar
  32. El-Kassaby, Y. A., Rudin, D., and Yazdani, R. 1989. Levels of outcrossing and contamination in two Pinus sylvestris L. seed orchards in northern Sweden. Scand. J. For. Res. 4: 41–49.CrossRefGoogle Scholar
  33. Erickson, V. J. 1987. The influence of distance and floral phenology on pollen gene flow and mating system patterns in a coastal Douglas-fir seed orchard. M.S. Thesis, Oregon State Univ., Corvallis, OR, USA.Google Scholar
  34. Eriksson, G., Jonsson, A. and Lindgren, D. 1973. Flowering in a clone trial of Picea abies Karst. Studia Forestalia Suecica Nr 110, Royal College of Forestry, Stockholm.Google Scholar
  35. Fast, W., Dancik, B. P. and Bower, R. C. 1986. Mating system and pollen contamination in a Douglas-fir clone bank. Can. J. For. Res. 16: 1314–1319.CrossRefGoogle Scholar
  36. Feret, P. P. and Bergmann, F. 1976. Gel electrophoresis of proteins and enzymes, pp. 49–77. In: Miksche J. P. (Ed) Modern methods in forest genetics. Springer Verlag, Hamburg.Google Scholar
  37. Friedman, S. T. and Adams, W. T. 1981. Genetic efficiency in loblolly pine seed orchards, pp. 213–224. In: Proc. 16th South Forest Tree Improve., conf., Blacksburg, VA.Google Scholar
  38. Friedman, S. T. and Adams, W. T. 1985. Estimation of gene flow into two seed orchards of loblolly pine (Pinus taeda L.). Theor. Appli. Genet. 69: 609–615.CrossRefGoogle Scholar
  39. Geburek, T., Scholz, F., Knabe, W. and Vornweg, A. 1987. Genetic studies by isozyme gene loci on tolerance and sensitivity in an air polluted Pinus sylvestris field trial. Silvae Genetica 36(2): 49–53.Google Scholar
  40. Harju, A. and Muona, O. 1989. Background pollination in Pinus sylvestris L. seed orchards. Scand. J. For. Res. 4(4): 513–520.CrossRefGoogle Scholar
  41. Hunter, S. C. 1977. An electrophoretic analysis of isoenzyme variation in a Piedmont loblolly pine seed orchard. M.S. Thesis, North Carolina State Univ., Raleigh, 48 pp.Google Scholar
  42. Joly, R. J. and Adams, W. T. 1983. Allozyme analysis of Pitch X Loblolly pine hybrids produced by supplemental mass pollination. For. Science 29(2): 423–432.Google Scholar
  43. Ledig, F. T., Guries, R. P. and Bonefeld, B. A. 1983. The relation of growth to heterozygosity in pitch pine. Evolution 37(6): 1227–1238.CrossRefGoogle Scholar
  44. Linhart, Y. B. and Mitton, J. B. 1985. Relationships among reproduction, growth rates, and protein heterozygosity in ponderosa pine. Amer. J. Bot. 72(2): 181 – 184.CrossRefGoogle Scholar
  45. Lowe, W. and Wheeler, N. C. 1990. Pollen contamination in seed orchards. In: Proc. Pollen management workshop, Southern Res. Inf. Exchange Group Meetings, Macon, Georgia.Google Scholar
  46. Mitton, J. B. and Grant, M. C. 1984. Associations among protein heterozygosity, growth rate, and developmental homeostasis. Ann. Rev. of Ecol. Syst. 15:479–499.CrossRefGoogle Scholar
  47. Moran, G. F. and Griffin, A. R. 1985. Non-random contribution of pollen in polycrosses of Pinus radiata D. Don. Silvae Genetica 34: 117–121.Google Scholar
  48. Moran, G. F., Bell, J. C. and Matheson, A. C. 1980. The genetic structure and levels of inbreeding in a Pinus radiata D. Don seed orchard. Silvae Genetica 29: 190–193.Google Scholar
  49. Müller-Starck, G. 1976. A simple method of estimating rates of self-fertilization by analyzing isozymes in tree seeds. Silvae Genetica 25: 15– 17.Google Scholar
  50. Müller-Starck, G. 1986. Genetic means of verifying observance of the law. II. Genetic characterization of orchard produced seeds. In: Muhs, H. J. (Ed) Biochemical genetics and legislation of forest reproductive material. Mitteilungen der Bundesforschungsanstalt fur Forst und Holzwirtschaft 154: 67–74.Google Scholar
  51. Müller-Starck, G.1987. Genetic differentiation among seed samples from provenances of Pinus sylvestris L. Silvae Genetica 36(5–6): 232–238.Google Scholar
  52. Müller-Starck, G. and Ziehe, M. 1984. Reproductive systems in conifer seed orchards. 3. Female and male fitnesses of individual clones realized in seeds of Pinus sylvestris L. Theor. Appl. Genet. 69: 173–177.Google Scholar
  53. Müller-Starck, G., Ziehe, M. and Hattemer, H. H. 1983. Reproductive systems in conifer seed orchards. 2. Reproductive selection monitored at an LAP gene locus in Pinus sylvestris L. Theor. Appli. Genet. 65: 309–316.Google Scholar
  54. Muona, O. and Harju, A. 1989. Effective population sizes, genetic variability, and mating system in natural stands and seed orchards of Pinus sylvestris. Silvae Genetica 38(5–6): 221–228.Google Scholar
  55. Nagasaka, K. and Szmidt, A. E. 1985. Multilocus analysis of external pollen contamination of a Scots pine (Pinus sylvestris L.) seed orchard. In: Gregorius, H. R. (Ed) Population genetics in Forestry. Lecture notes in Biomathematics 60: 134–138.CrossRefGoogle Scholar
  56. Nakamura, R. and Wheeler, N. C. 1990. Pollen competition and paternal success in Douglas-fir. Evolution (in press).Google Scholar
  57. Neale, D. B. 1984. Population genetic structure of the Douglas-fir shelterwood regeneration system in southwest Oregon. Ph.D. Thesis, Oregon State Univ., Corvallis, OR, USA.Google Scholar
  58. Neale, D. B. and Adams, W. T. 1985. The mating system in natural and shelterwood stands of Douglas-fir. Theor. Appli. Genet. 71: 201–207.Google Scholar
  59. Neale, D. B., Weber, J. C. and Adams, W. T. 1984. Inheritance of needle tissue isozymes in Douglas-fir. Can J. Gen. Cyto. 26: 459–468.Google Scholar
  60. O’Malley, D. and Wheeler, N. C. 1986. Differential pollination success of two-pollen parent controlled crosses in Douglas-fir. In: Proc. IUFRO Joint Meeting of working parties on Breeding Theory, Progeny Testing and Seed Orchards, Williamsburg, Virginia (Abstract).Google Scholar
  61. Omi, S. K. and Adams, W. T. 1986. Variation in seed set and proportions of outcrossed progeny with clones, crown position, and top pruning in a Douglas-fir seed orchard. Can. J. For. Res. 16(3): 502–507.CrossRefGoogle Scholar
  62. Paule, L. 1990. Bibliography: Isozymes and forest trees (1968-1989). Sveriges Lantbruksuniversitet, Institutionen for skoglig genetik och vaxtfysiologi Rapport -9.Google Scholar
  63. Ritland, K. and El-Kassaby, Y. A. 1985. The nature of inbreeding in a seed orchard of Douglas fir as shown by an efficient multi-locus model. Theor. Appl. Genet. 71: 375–384.CrossRefGoogle Scholar
  64. Rudin, D. 1986. Developmental trends in the field of biochemical genetics of forest trees. In: Proceedings 18th IUFRO World Congress, Division 2, Vol. 2, pp. 577–588.Google Scholar
  65. Rudin, D. and Lindgren, D. 1977. Isozyme studies in seed orchards. Studia Forestalia Suecica 139: 1–23.Google Scholar
  66. Rudin, D., Muona, O. and Yazdani, R. 1986. Comparison of the mating system of Pinus sylvestris in natural stands and seed orchards. Hereditas 104: 15–19.CrossRefGoogle Scholar
  67. Schoen, D. J. and Stewart, S. C. 1986. Variation in male reproductive investment and male reproductive success in white spruce. Evolution 40(6): 1109–1120.CrossRefGoogle Scholar
  68. Scholz, F., Gregorius, H. R. and Rudin, D. (Eds) 1989. Genetic Effects of Air Pollutants in Forest Tree Populations. Springer Verlag, Berlin, Heidelberg.Google Scholar
  69. Shaw, D. V. and Allard, R. W. 1982. Estimation of outcrossing rate in Douglas-fir using isozyme markers. Theor. Appl. Genet. 62: 113–120.CrossRefGoogle Scholar
  70. Shen, X. H., Rudin, D. and Lindgren, D. 1981. Study of pollination patterns in a Scots pine seed orchard by means of isozyme analysis. Silvae Genetica 30(1): 7–15.Google Scholar
  71. Smith, D. B. and Adams, W. T. 1983. Measuring of pollen contamination in clonal seed orchards with the aid of genetic markers. In: Proc. 17th South. For. Tree Improv. Conf., 64–73.Google Scholar
  72. Strauss, S. H. and Conkle, M. T. 1986. Segregation, linkage and diversity of allozymes in Knobcone pine. Theor. Appl. Genet. 72: 483–493.CrossRefGoogle Scholar
  73. Strauss, S. H. and Libby, W. J. 1987. Allozyme heterosis in radiata pine is poorly explained by overdominance. American Naturalist 130(6): 879–890.CrossRefGoogle Scholar
  74. Szmidt, A. E. 1987. Genetic composition of seed orchard crops. For. Ecol. Manag. 19: 227–232.CrossRefGoogle Scholar
  75. Wheeler, N. C. and Jech, K. S. 1985. Estimating supplemental mass pollination (SMP) success electrophoretically. In: 19th Can. Tree Improv. Conf. pp.111 – 120.Google Scholar
  76. Wheeler, N. C. and Jech, K. S. 1988. Supplemental mass pollination (SMP) in Douglas-fir seed orchards: Biological efficiency and economic evaluation. Weyer. Co. For. Res. Tech. Rep. #050-3210/25. 31 pp.Google Scholar
  77. Wheeler, N. C., Adams, W. T. and Hamrick, J. L. 1990. Pollen distribution in wind-pollinated seed orchards. In: Proc. Pollen Management Workshop, Southern Res. Inf. Exchange Group Meetings, Macon, Georgia.Google Scholar
  78. Wiselogel, A. E. and van Buijtenen, J. P. 1988. Probability of equal mating in polymix pollinations by loblolly pine (Pinus taeda L.). Silvae Genetica 27: 129–134.Google Scholar
  79. Woessner, R. H. and Franklin, E. C. 1973. Continued reliance on wind-pollinated southern pine seed orchards, is it reasonable? pp. 64–73. In: Proc. 12th South. For. Tree Improv. Conf.Google Scholar
  80. Yazdani, R., Hadders, G. and Szmidt, A. E. 1986. Supplemental mass pollination in a seed orchard of Pinus sylvestris L. investigated by isozyme analyses. Scand. J. For. Res. 1(3): 309–315.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • N. C. Wheeler
    • 1
  • K. S. Jech
    • 1
  1. 1.Weyerhaeuser Forestry Research CenterWashingtonUSA

Personalised recommendations