Allozyme markers in breeding zone designation

  • R. D. Westfall
  • M. T. Conkle
Part of the Forestry Sciences book series (FOSC, volume 42)


Early studies of allozyme variation in plant populations suggested that allelic frequencies in some loci vary by geography. Since then, the expectation that allozymes might be useful in describing geographic patterns has generally not been borne out by single locus analyses, except on the broadest scale. Multi-locus analyses reveal the converse: canonical correlation analysis of individual, uniformly-spaced genotypes describe statistically-significant, complex patterns with geography. Multi-locus scores in four major species, Abies concolor, Pinus lambertiana, P. ponderosa, and Pseudotsuga menziesii, of the mixed conifer forest in the Sierra Nevada correlate 0.40 or greater with the first canonical vector of a geographical trend surface equation. The different species follow similar patterns by latitude and elevation. In contrast with patterns in the Sierra Nevada, large-scale differentiation is weak (R 2 < 0.20) among populations of Pseudotsuga menziesii in the Coast Ranges and Siskyou Mountains of northern California and southern Oregon, where differentiation may be local. For the purpose of forming zones, we subdivided scores of the first two to four canonical vectors into groups and plotted them as multidimensional contour intervals. Reclassification by discriminant analysis serves as an approximate guide to transfer risks within and among these groups.

Key words

geographic variation multivariate analysis trend-surface analysis transfer risk 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, W. T. 1992. Gene dispersal within forest tree populations. This issue (pp. 217–240).CrossRefGoogle Scholar
  2. Adams, T. and Campbell, R. K. 1981. Genetic adaptation and seed source specificity, pp. 78–85. In: Hobbs, S. D. and Helgerson, O. T, (Eds) Reforestation of Skeletal Soils, Forest Res. Lab., Oregon State Univ., Corvallis, OR.Google Scholar
  3. Allard, R. W., Babbel, G. R., Clegg, M. T. and Kahler, A. L. 1972. Evidence for coadaptation in Avena barbata. Proc. Nat. Acad. Sci. USA 69: 3043–3048.PubMedCrossRefGoogle Scholar
  4. Archie, J. W., Simon, C. and Martin, A. 1989. Small sample size does decrease the stability of dendrograms calculated from allozyme-frequency data. Evolution 43(3): 678–683.CrossRefGoogle Scholar
  5. Bergmann, F. 1975. Adaptive acid posphatase polymorpism in conifer seeds. Silvae Genet. 24(5–6): 175–177.Google Scholar
  6. Bocquet-Appel, J.-P. and Sokal, R. R.1989. Spatial autocorrelation analysis of trend residuals in biological data. Syst. Zool. 38(4): 333–341.CrossRefGoogle Scholar
  7. Box, G. E. P. and Draper, N. R. 1987. Empirical Model-building and Response Surfaces. J. Wiley &amp; Sons, New York.Google Scholar
  8. Box, G. E. P., Hunter, W. G. and Hunter, J. S. 1978. Statistics for Experimenters. An Introduction to Design, Data Analysis, and Model Building. J. Wiley &amp; Sons, New York.Google Scholar
  9. Brown, A. D. H. 1984. Multilocus organization of plant populations, pp. 159–169. In: Wöhrmann, K. and Loeschcke, V. (Eds) Population Biology and Evolution. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  10. Buck, J. M., Adams, R. S., Cone, J., Conkle, M. T., Libby, W. J., Eden, C. J. and Knight, M. J. 1970. California Tree Seed Zones. USDA Forest Service.Google Scholar
  11. Campbell, R. K. 1984.Procedures for determining the biological limits of breeding zones in the Pacific Northwest,pp. 24–33.In:Proc.Progeny testing,servicewide genetics workshop,Charleston,SC,December 5–9,1983.USDA Forest Service,Timber Management.Google Scholar
  12. Campbell, R. K. 1986. Mapped genetic variation of Douglas-fir to guide seed transfer in southwest Oregon. Silvae Genet. 35(2–3): 85–96.Google Scholar
  13. Campbell, R. K. and Sugano, A. J. 1987. Seed zones and breeding zones for sugar pine in southwestern Oregon. USDA Forest Serv., Res. Pap. PNW-RP-383, 18 pp.Google Scholar
  14. Campbell, R. K., Pawuk, W. A. and Harris, A. S. 1989. Microgeographic genetic variation of Sitka spruce in southeastern Alaska. Can. J. For. Res. 19:1004–1013.CrossRefGoogle Scholar
  15. Cavalli-Sforza, L. L. and Edwards, A. W. F. 1967. Phylogenetic analysis: Models and estimation procedures. Evolution 21: 550–570.CrossRefGoogle Scholar
  16. Conkle, M. T. 1974. Enzyme poymorphism in forest trees, pp. 95–105. In: Proc. third North Amer. for. biol. workshop, Colorado State University, 9–12 Sept., 1974. College of Forestry and Natural Resources, Colorado State University, Fort Collins, CO.Google Scholar
  17. Conkle, M. T. and Westfall, R. D. 1984. Evaluating breeding zones for ponderosa pine in California, pp. 89–98. In: Progeny testing, proc. servicewide genetics workshop, Charleston, SC, December 5–9, 1983. USDA Forest Service, Timber Management.Google Scholar
  18. Conkle, M. T. and Westfall, R. D. 1987. Douglas-fir isozyme test results. USFS, Pac. SW For. & Range Expt. Stn., Unpublished report to the USFS R-5 Regional Tree Improvement Program, 5 pp.Google Scholar
  19. Conkle, M. T. and Westfall, R. D. 1988. White fir report. USFS, Pac. SW For. & Range Expt. Stn., Unpublished report to the USFS R-5 Regional Tree Improvement Program, 13 pp.Google Scholar
  20. Dickinson, T., Knowles, P. and Parker, W. H. 1988. Data set congruence in northern Ontario tamarack (Larix laricina, Pinacea). Syst. Bot. 13(3): 442–455.CrossRefGoogle Scholar
  21. Dorman, K. W.1976. The Genetics and Breeding of Southern Pines. USDA, Agric. Handbook 471, 407 pp.Google Scholar
  22. Draper, N. R. and Smith, H. 1966. Applied Regression Analysis. John Wiley & Sons, Inc., New York, 407 pp.Google Scholar
  23. Dunn, G. and Everitt, B. S. 1982. An Introduction to Mathematical Taxonomy. Cambridge University Press, Cambridge.Google Scholar
  24. Efron, B. 1979. Bootstrap methods: another look at the jacknife. Ann. Stat. 7:1–26.CrossRefGoogle Scholar
  25. El-Kassaby, Y. A. 1990. Genetic Variation within and among conifer populations: review and evaluation of methods, pp. 59–74. In: Hattemer, H. H., Fineschi, S., Cannata, F. and Malvoti, M. E. (Eds) Biochemical Markers in the Population Genetics of Forest Trees. SPB Academic Publishing, The Hague.Google Scholar
  26. Ellstrand, N. C. 1992. Gene flow among seed plant populations. This issue (pp. 241–256).Google Scholar
  27. Epperson, B. K. 1992. Spatial structure of genetic variation within populations of forest trees.This issue (pp. 257–278).CrossRefGoogle Scholar
  28. Epperson, B. K. 1990. Spatial patterns of genetic variation within plant populations, pp. 229–253. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L. and Weir, B. S. (Eds) Plant Population Genetics, Breeding, and Genetic Resources. Sinauer Associates Inc., Sunderland, MA.Google Scholar
  29. Falkenhagen, E. R. 1985. Isozyme studies in provenance research of forest trees. Theor. Appl. Genet. 69(4): 335–347.CrossRefGoogle Scholar
  30. Feret, P. P. and Bergmann, F. 1976. Gel electrophoresis of proteins and enzymes, pp. 49–77. In: Miksche, J. P. (Ed) Modern Methods in Forest Genetics. Springer-Verlag, New York.Google Scholar
  31. Gittins, R. 1968. Trend-surface analysis of ecological data. J. Ecology 56(3): 845–869.CrossRefGoogle Scholar
  32. Gittins, R. 1985. Canonical Analysis. A Review with Applications in Ecology. Springer-Verlag, New York.Google Scholar
  33. Griffin, J. R. and Critchfield, W. B. 1982. The distribution of forest trees in California. USDA For. Serv., Research Pap. PSW-82,118 pp.Google Scholar
  34. Guries, R. P. 1984. Genetic variation and population differentiation in forest trees, pp. 119–131. In: Proc. eighth N. Amer. for. biol. workshop, Utah State Univ., Logan, UT, Jul. 30-Aug. 1, 1984. Dept. For Res., Utah State Univ., Logan, UT.Google Scholar
  35. Guries, R. P. and Ledig, F. T. 1981. Genetic structure of populations and differentiation in forest trees, pp. 42–47. In: Proc. symposium on isozymes of North American forest trees and forest insects, Berkeley, CA, July 27, 1979. USDA For. Serv. PSW For. & Range Expt. Stn., Gen. Tech. Rep. PSW-48.Google Scholar
  36. Hamrick, J. L. and Godt, M. J. W. 1990. Allozyme Diversity in plant species, pp. 43–63. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L. and Weir, B. S. (Eds) Plant Population Genetics, Breeding, and Genetic Resources. Sinauer Associates Inc., Sunderland, MA.Google Scholar
  37. Kempthorne, O. 1969. An Introduction to Genetic Statistics. Iowa State Univ. Press, Ames, IA.Google Scholar
  38. Kinloch, B. B., Westfall, R. D. and Forrest, G. I. 1986. Caledonian Scots pine: origins and genetic structure. New Phytol. 104: 703–729.CrossRefGoogle Scholar
  39. Kitzmiller, J. H. 1976. Tree Improvement Master Plan for the California Region. USDA Forest Service, San Francisco, 123 pp.Google Scholar
  40. Kitzmiller, J. H. 1990. Genetic variation and adaptability of Douglas-fir in northwestern California. In: Proc. Joint Mtg. W. For. Genet. Assoc. & IUFRO Working Parties S2.02-05. 06, 12, & 14, Douglas-fir, Contorta Pine, Sitka Spruce, & Abies Breeding & Genetic Resources, Olympia, WA, Aug. 20-21, 1990.Google Scholar
  41. Knowles, P. 1985. Comparison of isozyme variation among natural stands and plantations: jack pine and black spruce. Can. J. For. Res. 15: 902–908.CrossRefGoogle Scholar
  42. Ledig, F. T. 1988. The conservation of diversity in forest trees. BioSci. 38(7): 471–479.CrossRefGoogle Scholar
  43. Lee, P. J. 1969. The theory and application of canonical trend surfaces. J. Geology 77(3): 303–318.CrossRefGoogle Scholar
  44. Loveless, M. D. 1992. Isozyme variation in tropical trees: patterns of genetic organization. This issue (pp. 67-94).Google Scholar
  45. Lundkvist, K.1979. Allozyme frequency distributions in four Swedish populations of Norway spruce (Picea abies K.). I. Estimations of genetic variation within and among populations, genetic linkage and a mating system parameter. Hereditas 90: 127–143.CrossRefGoogle Scholar
  46. Manly, B. F. J. 1986. Multivariate Statistical Methods. A Primer. Chapman and Hall, New York, 159 pp.Google Scholar
  47. Merkle, S. A., Adams, W. T. and Campbell, R. K. 1988. Multivariate analysis of allozyme variation patterns in coastal Douglas-fir from southwest Oregon. Can. J. For. Res. 18: 181–187.CrossRefGoogle Scholar
  48. Millar, C. I., Strauss, S. H., Conkle, M. T. and Westfall, R. D. 1988. Allozyme differentiation and biosystematics in the California closed-cone pines (Subsection Oocarpae Little & Critchfield, Genus Pinus). Syst. Bot. 13(3): 351–370.CrossRefGoogle Scholar
  49. Millar, C. I. and Westfall, R. D. 1992. Allozyme markers in forest genetic conservation. This issue (pp. 347–371).Google Scholar
  50. Mitton, J. B. 1992. The dynamic mating systems of conifers. This issue (pp. 197–216).Google Scholar
  51. Mitton, J. B., Linhart, Y. B., Hamrick, J. L. and Beckman, J. S. 1977. Observations on the genetic structure and mating system of ponderoså pine in the Colorado Front Range. Theor. Appl. Genet. 51: 5–13.CrossRefGoogle Scholar
  52. Moran, G. F. and Adams, W. T. 1989. Microgeographical patterns of allozyme differentiation in Douglas-fir from southwest Oregon. For. Sci. 35(1): 3–15.Google Scholar
  53. Morrison, D. F. 1990. Multivariate Statistical Methods. McGraw-Hill, New York.Google Scholar
  54. Muona, O. 1990. Population genetics in forest tree improvement, pp. 282–298. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L. and Weir, B. S. (Eds) Plant Population Genetics, Breeding, and Genetic Resources. Sinauer Associates Inc., Sunderland, MA.Google Scholar
  55. Namkoong, G. 1969. Nonoptimality of local races, pp. 149–153. In: Proc. tenth south. for. tree improv. conf. Texas For. Serv., Texas A & M Univ. Press, College Sta., TX.Google Scholar
  56. Namkoong, G. 1985. Considerations of respect for future forest populations, pp. 117–121. In: Proc. N. Amer. for. commission tree improv, Study Group. The state of the art in forest genetics and breeding. Int. Meeting, Satellite to the IX World Forestry Congress, Mexico City, Jul. 5, 1985.Google Scholar
  57. Namkoong, G. 1990. Forest genetics: 2050. The quick and the dead. In: Proc. Joint Mtg. W. For Genet. Assoc. & IUFRO Working Parties S2.02-05. 06, 12, & 14, Douglas-fir, Contorta Pine, Sitka Spruce, & Abies Breeding & Genetic Resources, Olympia, WA, Aug. 20-21, 1990.Google Scholar
  58. Namkoong, G. and Kang, H. 1990. Quantitative genetics of forest trees, pp. 139–188. In: Janick, J. (Ed) Plant Breeding Reviews, Vol 4. Timber Press, Portland, OR.Google Scholar
  59. Namkoong, G., Kang, H. C. and Brouard, J. S.1988. Tree Breeding: Principles and Strategies. Springer-Verlag, New York.CrossRefGoogle Scholar
  60. Neale, D. B. and Adams, W. T. 1985. Allozyme and mating-system variation in balsam fir (Abies balsamea) across a continuous elevational transect. Can. J. Bot. 63(2): 2448–2453.CrossRefGoogle Scholar
  61. Neale, D. B., Devey, M. E., Jermstad, K. D., Ahuja, M. R., Alosi, M.C. and Marshall, K. A. 1992. Use of DNA markers in forest tree improvement research. This issue (pp. 391 –407).Google Scholar
  62. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.PubMedGoogle Scholar
  63. Rehfeldt, G. E. 1986. Adaptive variation in Pinus ponderosa from Intermountain regions. I. Snake and Salmon River Basins. For. Sci. 32(1): 79-92.Google Scholar
  64. Rehfeldt, G. E. 1990a. Gene resource management: Using models of genetic variation in silviculture, pp. 31–44. In: Proc. genetics/silviculture workshop, Wenatchee, WA. Aug 27–31, 1990, USDA Forest Service.Google Scholar
  65. Rehfeldt, G. E. 1990b. Genetic differentiation among populations of Pinus ponderosa from the upper Colorado River Basin. Bot. Gaz. 151(1): 125-137.CrossRefGoogle Scholar
  66. SAS Institute Inc. 1985. SAS® User’s Guide: Statistics. SAS Institute Inc., Cary, NC, 956 pp.Google Scholar
  67. Smouse, P. E. and Williams, R. C. 1982. Multivariate analysis of HLA-disease associations,Biometrics 38(3): 757–768.PubMedCrossRefGoogle Scholar
  68. Smouse, P. E., Spielman, R. S. and Park, M. H. 1982. Multiple-locus allocation of individuals to groups as a function of the genetic variation within and differences among human populations. Am. Nat. 119(4): 445–463.CrossRefGoogle Scholar
  69. Spielman, R. S. and Smouse, P. E. 1976. Multivariate classification of human populations. I.Allocation of Yanomama Indians to villages. Am. J. Hum. Genet. 28(4): 317–331.PubMedGoogle Scholar
  70. Swofford, D. L. 1981. On the utility of the distance Wagner procedure, pp. 25–43. In:Funk, V. A. and Brooks, D. R. (Eds) Advances in Cladistics. Allen Press, Lawrence, KS.Google Scholar
  71. Thorpe, R. S. 1985. Clines: Character number and the multivariate analysis of simple patterns of geographic variation. Biol. J. Linn. Soc. 26(3): 201–214.CrossRefGoogle Scholar
  72. Thorpe, R. S. 1987. Complex clines: the predictivity of complicated patterns of geographic variation portrayed by multivariate analysis. Biol. J. Linn. Soc. 31: 75–88.CrossRefGoogle Scholar
  73. Tigerstedt, P. M. A. 1973. Studies on isozyme variation in marginal and central populations of Picea abies. Hereditas 75:47–60.PubMedCrossRefGoogle Scholar
  74. Wartenberg, D. 1985. Canonical trend surface analysis: A method for describing geographic patterns. Syst. Zool. 34(3): 259–279.CrossRefGoogle Scholar
  75. Weir, B. S. 1990. Genetic Data Analysis. Sinauer Associates, Inc., Sunderland, MA.Google Scholar
  76. Westfall, R. D. 1991. Developing seed transfer zones. In: Fins, L. and Friedman, S. T. (Eds) Manual of Quantitative Forest Genetics (in press).Google Scholar
  77. Williams, B. K. and Titus, K. 1988. Assessment of sampling stability in ecological applications of discriminant analysis. Ecology 69(4): 1275–1285.CrossRefGoogle Scholar
  78. Yeh, F. C., Cheliak, W. M., Dancik, B. P., Illingworth, K. Trust, D. C. and Pryhitka, B. A.1985. Population differentiation in lodgepole pine, Pinus contorta spp. latifolia: a discriminant analysis of allozyme variation. Can. J. Genet. Cytol. 27: 210–218.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • R. D. Westfall
    • 1
    • 2
  • M. T. Conkle
    • 1
  1. 1.Institute of Forest Genetics, Pacific SW Forest & Range Experiment StationUSDA Forest ServiceBerkeleyUSA
  2. 2.National Forest Genetic Electrophoresis LaboratoryUSDA Forest ServiceCaminoUSA

Personalised recommendations