Gene dispersal within forest tree populations

Part of the Forestry Sciences book series (FOSC, volume 42)


Patterns of gene dispersal by seeds and pollen greatly influence the genetic structure of plant populations and their effective size. This paper reviews methods of measuring gene dispersal and current information on patterns of dispersal within local populations of forest trees. Recently, a number of statistical procedures for investigating gene movement based on the use of large numbers of isozyme loci have been described. These procedures include various forms of parentage analysis and the fitting of mating models to genotypic arrays of offspring from individual maternal plants. With the levels of genetic discrimination currently possible in forest trees, the model approach appears to be the most reliable means of estimating gene dispersal parameters. Too little data are available to draw general conclusions about patterns of gene movement within natural populations. Nevertheless, reports to date indicate that dispersal by both pollen and seed can be considerable. For any one mother tree, the bulk of effective pollen in conifers may come from distant males in the same stand or from surrounding stands (gene flow). In insectpollinated angiosperms, gene flow may also be substantial, but cross—fertilization within stands may primarily be between nearest flowering trees.

Key words

gene dispersal mating patterns paternity analysis genetic structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbujani, G.1987. Autocorrelation of gene frequencies under isolation by distance.Genetics 117: 777–782.PubMedGoogle Scholar
  2. Beckman, J. S. and Mitton, J. B. 1984. Peroxidase allozyme differentiation among successional stands of ponderosa pine. Amer. Midl. Nat. 112: 43–49.CrossRefGoogle Scholar
  3. Bennett, J. H. and Binet, F. E. 1956. Association between Mendelian factors with mixed selfing and random mating. Heredity 10: 51–56.CrossRefGoogle Scholar
  4. Bradshaw, A. D. 1984. Ecological significance of genetic variation between populations, pp. 213–228. In: Dirzo, R. and Sarukhan, J. (Eds) Perspectives on Plant Population Ecology. Sinauer, Sunderland, Mass.Google Scholar
  5. Brown, A. H. D. and Albrecht, L. 1980. Variable outcrossing and the genetic structure of predominantly self-pollinated species. J. Theor. Biol. 82: 591–606.PubMedCrossRefGoogle Scholar
  6. Brown, A. H. D. and Moran, G. F. 1981. Isozymes and the genetic resources of forest trees, pp. 1–10. In: Conkle, M. T. (Ed) Isozymes in North American Forest Trees and Forest Insects. Pac. SW Forest and Range Expt. Station Tech. Rep. # 48.Google Scholar
  7. Campbell, R. K. 1979. Genecology of Douglas-fir in a watershed in the Oregon cascades. Ecology 60: 1036–1050.CrossRefGoogle Scholar
  8. Cliff, A. D. and Ord, J. K. 1981. Spatial Processes. Pion, London.Google Scholar
  9. Crawford, T. J. 1984. The estimation of neighborhood parameters for plant populations. Heredity 52: 273–283.CrossRefGoogle Scholar
  10. Dewey, S. E. and Heywood, J. S. 1988. Spatial genetic structure in a population of Psychotria nervosa. I. Distribution of genotypes. Evolution 42: 834–838.CrossRefGoogle Scholar
  11. Epperson, B. K. 1983. Multilocus Genetic Structure of Natural Populations of Lodgepole Pine. Ph.D. dissertation, Department of Genetics, University of California, Davis.Google Scholar
  12. Epperson, B. K. 1989. Spatial patterns of genetic variation within plant populations, pp. 229–253. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L. and Weir, B. S. (Eds) Plant Population Genetics, Breeding, and Genetic Resources. Sinauer Associates, Sunderland, Mass.Google Scholar
  13. Epperson, B. K. 1990. Spatial autocorrelation of genotypes under directional selection. Genetics 124: 757–771.PubMedGoogle Scholar
  14. Epperson, B. K. and Allard, R. W. 1984. Allozyme analysis of the mating system in lodgepole pine populations. J. Hered. 75: 212–214.Google Scholar
  15. Epperson, B. K. and Allard, R. W. 1987. Linkage disequilibrium between allozymes in natural populations of lodgepole pine. Genetics 115: 341 -352.PubMedGoogle Scholar
  16. Epperson, B. K. and Allard, R. W. 1989. Spatial autocorrelation analysis of the distribution of genotypes within populations of lodgepole pine. Genetics 121: 369–377.PubMedGoogle Scholar
  17. Epperson, B. K. and Clegg, M. T. 1986. Spatial autocorrelation analysis of flower color polymorphisms within substructured populations of morning glory (Ipomoea purpurea). Am. Nat. 128: 840–858.CrossRefGoogle Scholar
  18. Epperson, B. K. and Clegg, M. T. 1987. Frequency-dependent variation for outcrossing rate among flower color morphs of Ipomoea purpurea. Evolution 41: 1302–1311.CrossRefGoogle Scholar
  19. Farris, M. S. and Mitton, J. B. 1984. Population density, outcrossing rate and heterozygote superiority in ponderosa pine. Evolution 38: 1151–1154.CrossRefGoogle Scholar
  20. Gabriel, K. R. and Sokal, R. R. 1969. A new statistical approach to geographic variation analysis. Syst. Zool. 18: 259–270.CrossRefGoogle Scholar
  21. Hamrick, J. L. and Godt, M. J. 1989. Allozyme diversity in plant species, pp. 43–63. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L. and Weir, B. S. (Eds) Plant Population Genetics, Breeding, and Genetic Resources. Sinauer Associates, Sunderland, Mass.Google Scholar
  22. Imaizumi, Y., Morton, N. E. and Harris, D. E. 1970. Isolation by distance in artificial populations. Genetics 66: 569–582.PubMedGoogle Scholar
  23. Malecot, G. 1948. Les Mathématiques de l’Hérédité. Masson, Paris.Google Scholar
  24. Malecot, G. 1973. Isolation by distance, pp. 72–75. In: Morton, N. E. (Ed) Genetic Structure of Populations. University of Hawaii Press, Honolulu.Google Scholar
  25. Merzeau, D., DiGiusto, F., Comps, B., Thiebaut, B., Letouzey, J. and Cuguen, J. 1989. Genetic control of isozyme systems and heterogeneity of pollen contribution in Beech (Fagus sylvatica L.). Silvae Genetica 38: 195–201.Google Scholar
  26. Mitton, J. B. 1983. Conifers, pp. 443–472. In: Tanksley, S. D. and Orton, T. J. (Eds) Isozymes in Plant Genetics and Breeding. Elsevier, Amsterdam.Google Scholar
  27. Mitton, J. B. and Grant, M. C. 1984. Associations among protein heterozygosity, growth rate and developmental homeostasis. Ann. Rev. Ecol. Syst. 15: 479–499.CrossRefGoogle Scholar
  28. Mitton, J. B., Linhart, Y. B., Hamrick, J. L. and Beckman, J. S. 1977. Observations on the genetic structure and mating system of ponderosa pine in the Colorado Front Range. Theor. Appl. Genet. 51: 5–13.CrossRefGoogle Scholar
  29. Mitton, J. B., Stutz, H. P., Schuster, W. S. and Shea, K. L. 1989. Genotypic differentiation at PGM in Engelmann spruce from wet and dry sites. Silvae Genetica 38: 217–221.Google Scholar
  30. Moran, G. F. and Brown, A. H. D. 1980. Temporal heterogeneity of outcrossing rates in alpine ash (Eucalyptus delagatensis R. T. Bak.). Theor. Appl. Gent. 57: 101 -105.CrossRefGoogle Scholar
  31. Morton, N. E. 1973a. Kinship and population structure, pp. 66– 69. In: Morton, N. E. (Ed) Genetic Structure of Populations. University of Hawaii Press, Honolulu.Google Scholar
  32. Morton, N. E. 1973b. Kinship bioassay, pp. 158–163. In: Morton, N. E. (Ed) Genetic Structure of Populations. University of Hawaii Press, Honolulu.Google Scholar
  33. Muona, O. 1989. Population genetics in forest tree improvement, pp. 282–298. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L. and Weir, B. S. (Eds) Plant Population Genetics, Breeding, and Genetic Resources. Sinauer Associates, Sunderland, Mass.Google Scholar
  34. Muona, O., Yazdani, R. and Rudin, D. 1987. Genetic change between life stages in Pinus sylvestris: allozyme variation in seeds and planted seedlings. Silv. Genet. 36: 39–42.Google Scholar
  35. Neale, D. B. and Adams W. T. 1985. The mating system in natural and shelterwood stands of Douglas-fir. Theor. Appl. Genet. 71: 201–207.Google Scholar
  36. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Nat. Acad. Sci. USA 70: 3321–3323.PubMedCrossRefGoogle Scholar
  37. Oden, N. L. 1984. Assessing the significance of a spatial correlogram. Geographical Analysis 16: 1–16.CrossRefGoogle Scholar
  38. Oden, N. L. and Sokal, R. R. 1986. Directional autocorrelation: an extension of spatial correlograms to two dimensions. Syst. Zool. 35: 608–617.CrossRefGoogle Scholar
  39. Ord, J. K. 1980. Tests of significance using non-normal data. Geographical Analysis 12: 387–392.CrossRefGoogle Scholar
  40. Phillips, M. A. and Brown, A. H. D. 1977. Mating system and hybridity in Eucalyptus pauciflora. Aust. J. Biol. Sci. 30: 337–344.Google Scholar
  41. Plessas, M. E. and Strauss, S. H. 1986. Allozyme differentiation among populations, stands and cohorts in Monterey pine. Can. J. For. Res. 16: 1155–1164.CrossRefGoogle Scholar
  42. Prout, T. 1973. Appendix to Mitton, J. B. and Koehn, R. K. Population genetics of marine pelecypods. III. Epistasis between functionally related isozymes in Mytilas edulis. Genetics 73: 487–496.Google Scholar
  43. Ritland, K. 1985. The genetic mating structure of subdivided populations. I. Open-mating model. Theor. Pop. Biol. 27: 51 -74.CrossRefGoogle Scholar
  44. Sakai, K. 1985. Studies on breeding structure in two tropical tree species, pp. 212–225. In: Gregorius, H. R. (Ed) Population Genetics in Forestry. Lecture Notes In Biomathematics 60. Springer-Verlag, Berlin.Google Scholar
  45. Schoen, D. J. and Latta, R. G. 1989. Spatial autocorrelation of genotypes in populations of Impatiens pallida and Impatiens capensis. Heredity 63: 181 -189.CrossRefGoogle Scholar
  46. Shaw, D. V., Kahler, A. L. and Allard, R. W. 1981. A multilocus estimator of mating system parameters in plant populations. Proc. Natl. Acad. Sci. USA 78: 1298–1302.PubMedCrossRefGoogle Scholar
  47. Sokal, R. R. 1979. Ecological parameters inferred from spatial correlograms, pp. 167–196. In: Patil, G. P. and Rosenweig, M. L. (Eds) Contemporary Quantitative Ecology and Related Econometrics. International Cooperative Publishing House, Fairland, Md.Google Scholar
  48. Sokal, R. R., Jacquez, G. M. and Wooten, M. C. 1989. Spatial autocorrelation analysis of migration and selection. Genetics 121: 845–855.PubMedGoogle Scholar
  49. Sokal, R. R. and Oden, N. L. 1978. Spatial autocorrelation in biology. 1. Methodology. Biol. J. Linn. Soc. 10: 199–228.CrossRefGoogle Scholar
  50. Sokal, R. R. and Wartenberg, D. E. 1983. A test of spatial autocorrelation analysis using an isolation-by-distance model. Genetics 105: 219–237.PubMedGoogle Scholar
  51. Sorensen, F. C. and Miles, R. S. 1982. Inbreeding depression in height, height growth, and survival of Douglas-fir, ponderosa pine and noble fir to 10 years of age. For. Sci. 28: 283–292.Google Scholar
  52. Strauss, S. H. 1986. Heterosis at allozyme loci under inbreeding and cross-breeding in Pinus attenuata. Genetics 113: 115–134.PubMedGoogle Scholar
  53. Strauss, S. H. and Libby, W. J. 1987. Allozyme heterosis in radiata pine is poorly explained by overdominance. Am. Nat. 130: 879–890.CrossRefGoogle Scholar
  54. Turner, M. E., Stephens, J. C. and Anderson, W. W. 1982. Homozygosity and patch structure in plant populations as a result of nearest-neighbor pollination. Proc. Natl. Acad. Sci. USA 79: 203–207.PubMedCrossRefGoogle Scholar
  55. Upton, G. J. G. and Fingleton, B. 1985. Spatial Data Analysis by Example. Vol. 1. Point Pattern and Quantitative Data. Wiley, New York.Google Scholar
  56. Wagner, D. B., Sun, Z.-X., Govindaraju, D. R. and Dancik, B. P. 1989. The population genetic structure of chloroplast DNA polymorphism in a Pinus banksiana-P. contorta sympatric region: spatial autocorrelation, pp. 19–32. In: Hallgren, J. E. (Ed) Molecular Genetics of Forest Trees. Proc. Frans Kempe Symp. Swedish Univ., Agric. Sci., Umea, Rep. 8.Google Scholar
  57. Wheeler, N. C. and Guries, R. P. 1982. Population structure, genic diversity and morphological variation in Pinus contorta Dougl. Can. J. For. Res. 12: 595–606.CrossRefGoogle Scholar
  58. Wright,S. 1943. Isolation by distance. Genetics 28: 114–138.PubMedGoogle Scholar
  59. Wright, S. 1946. Isolation by distance under diverse systems of mating. Genetics 31: 39–59.Google Scholar
  60. Yazdani, R., Lingren, D. and Rudin, D. 1985. Gene dispersion and selfing frequency in a seed tree stand of Pinus sylvestris (L.), pp. 1139–1154. In: Gregorius, H. R. (Ed) Population Genetics in Forestry. Lecture Notes In Biomathematics 60, Springer-Verlag, Berlin.Google Scholar
  61. Yazdani, R., Muona, O., Rudin, D. and Szmidt, A. E. 1985. Genetic structure of a Pinus sylvestris L. seed-tree stand and naturally regenerated understory. For. Sci. 31: 430–436.Google Scholar
  62. Yeh, F. C. and Layton, C. 1979. The organization of genetic variability in central and marginal populations of lodgepole pine Pinus contorta spp. latifolia. Can. J. Genet. Cytol. 21: 487–503.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  1. 1.Department of Forest ScienceOregon State UniversityCorvallisUSA

Personalised recommendations