Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 220))

Abstract

This paper reviews simple theoretical models and recent experimental advances concerned with frictional processes at the atomic scale. Two simple models for wearless interfacial friction are discussed, the independent oscillator (IO) model, and the Frenkel-Kontorova model. The IO model is compared with molecular dynamics calculations between films of close-packed alkane molecules. Atomic force microscope studies of friction are discussed, and the role of other tip-based proximal probe techniques in understanding tribological processes is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. M. McClelland, in Adhesion and Friction, M. Grunze and H. J. Kreuzer, eds. Springer Series in Surface Science 17 (Springer Verlag, Berlin, 1990), p. 1.

    Google Scholar 

  2. G. A. Tomlinson, Phil. Mag. Series 7 7, 905 (1929).

    Google Scholar 

  3. J. Skinner, “An Atomic Model of Friction,” unpublished manuscript, Central Electricity Generating Board Report number RD/B/N3137, Berkeley Nuclear Laboratories (1974).

    Google Scholar 

  4. see, for example H. Goldstein, Classical Mechanics, 2nd ed. (Addison-Wesley, Reading, 1980).

    Google Scholar 

  5. M. Hirano and K. Shinjo, Phys. Rev. B 41, 11837 (1990).

    Article  ADS  Google Scholar 

  6. Y. I. Frenkel and T. Kontorova, Zh. Eksp. Teor. Fiz. 8, 1340 (1938).

    MATH  Google Scholar 

  7. F. C. Frank and J. H. van der Mewe, Proc. R. Soc. 198, 205, 216 (1949).

    ADS  MATH  Google Scholar 

  8. for a review, see P. Bak, Rep. Prog. Phys. 45, 587 (1982).

    Google Scholar 

  9. J. B. Sokoloff, Surf. Sci. 144, 267 (1984); Phys. Rev. Lett. 66, 965 (1991); Phys. Rev. B 42, 760 (1990)

    Article  ADS  Google Scholar 

  10. S. Aubry, Ferroelectrics 24, 53 (1980); M. Peyrard and S. Aubry: J. Phys. C16, 1593 (1983).

    Article  Google Scholar 

  11. J. N. Glosli and G. M. McClelland, to be published.

    Google Scholar 

  12. D. Maugis, G. Desalos-Andarelli, A. Heurtel, and R. Courtel, ASLE Trans. 21, 1 (1976); R. Feder and P. Chaudhari, Wear 19, 109 (1972); G. Andarelli, D. Maugis and R. Courtel, Wear 23, 21 (1973); N. Gane and J. Skirmer Wear 25,381 (1973); G. M. Pharr and W. C. Oliver J. Mater. Res. 4, 94 (1989); N. Gane and F.P. Bowden, Jour. Appl. Phys. 39, 1432 (1968); N. Gane, Proc. Roy. Soc. Lond. A 317, 367 (1970); N. Gane and J.M. Cox, Phil. Mag. 22, 881 (1970)

    Article  Google Scholar 

  13. Q. Guo, J.D.J. Ross, and H.M. Pollock, Mat. Res. Soc. Symp. Proc. 140, 51 (1989); M.D. Pashley, J.B. Pethica, and D. Tabor, Wear 100, 7 (1984); D. Maugis and H.M. Pollock, Acta Metallurgica 32, 1323 (1984).

    Google Scholar 

  14. G. Binnig, C. F. Quate, and Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986).

    Article  ADS  Google Scholar 

  15. for a review see D. Rugar and P. Hansma, Phys. Today 43, 23 (1990).

    Article  Google Scholar 

  16. G. Neubauer, S.R. Cohen, G.M. McClelland, D.E. Horn, and C.M. Mate, and C. M. Mate, Rev. Sci. Instrum. 61 2296 (1990).

    Article  ADS  Google Scholar 

  17. O. Marti, J. Colchero and J. Mlynek, Nanotechnology 1, 141 (1990).

    Article  ADS  Google Scholar 

  18. G. Meyer and N. M. Amer, Appl. Phys. Lett. 57, 2089 (1990).

    Article  ADS  Google Scholar 

  19. J.B. Pethica, Phys. Rev. Lett. 57, 3235 (1986).

    Article  ADS  Google Scholar 

  20. D. Rugar, H.J. Mamin, R. Erlandsson, J.E. Stern, and B.D. Terris, Rev. Sci. Inst. 59, 2337 (1988); D. Rugar H. J. Mamin and P. Gunther, Appl. Phys. Lett. 55, 2588 (1989).

    Article  ADS  Google Scholar 

  21. C.M. Mate, G.M. McClelland, R. Erlandsson, and S. Chiang, Phys. Rev. Lett. 59, 1942 (1987).

    Article  ADS  Google Scholar 

  22. J. A. Greenwood and J. H. Tripp, J. Appl. Mech. March 1979 p. 153; J. A. Greenwood, J.Lubrication Tech. Jan. 1967, p. 81; J. A. Greenwood and J. B. P. Williamson, Proc. Roy. Soc. Lond. 295, 300 (1966).

    Google Scholar 

  23. R. Erlandsson, G. Hadziioannou, C.M. Mate, G.M. McClelland, and S. Chiang, J. Chem. Phys. 89, 5190 (1988).

    Article  ADS  Google Scholar 

  24. G. J. Gennann, G. M. McClelland, G. Neubauer, S. R. Cohen, H. Seki, and Y. Mitsuda, to be published.

    Google Scholar 

  25. S.R. Cohen, G. Neubauer, and G.M. McClelland, J. Vac. Sci. Technol. A 8, 3449 (1990).

    Article  ADS  Google Scholar 

  26. R. Kaneko, K. Nonaka, and K. Yasuda, J. Vac. Sci. Technol. A 6 291 (1988); R. Kaneko, J. Microscopy 152, 363 (1988).

    Article  ADS  Google Scholar 

  27. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. 50, 120 (1983).

    Article  ADS  Google Scholar 

  28. J. Microscopy 152 (1989); J. Vac. Sci. Tech. A 8, no. 1 (1990); J. Vac. Sci Tech. B 9, No. 2, Part 2 (1991).

    Google Scholar 

  29. E. Meyer, H. Heinzelmann, P. Grtitter, Th. Jung, H.-R. Hidber, H. Rudin, and H.-J. Güntherodt, Thin Solid Films, 181, 527 (1989).

    Article  ADS  Google Scholar 

  30. B. Shushan, and G. S. Blackman, Trans. ASME J. Tribology, to be published.

    Google Scholar 

  31. H.J. Mamin, E. Ganz, D.W. Abraham, R.E. Thomson, and J. Clarke, Phys. Rev. B 34, 9015 (1986).

    Article  ADS  Google Scholar 

  32. T.R. Albrecht, Ph.D. Dissertation, Stanford University, (1989).

    Google Scholar 

  33. E. Meyer, H. Heinzelmann, D. Brodbeck, G. Overney, R. Overney, L. Howald, H. Hug, T. Jung, H. R. Hidber, and H.-J. Guntherodt, J. Vac. Sci Technol. B 9, 1329 (1991).

    Article  Google Scholar 

  34. G. S. Blackman, C. M. Mate, and M. R. Philpott, Vacuum 41, 1283 (1990).

    Article  Google Scholar 

  35. V. Novotny, J. D. Swalen, and J. P. Rabe, Langmuir 5, 485 (1989); V. DePalma and N. Tillman, Langmuir 5, 868 (1989); o. Levine and W.A. Zisman, J. Phys. Chem. 61,1068 (1957).

    Article  Google Scholar 

  36. C. M. Lieber and Y. Kim, to be published.

    Google Scholar 

  37. E.W. Müller, Z. Physik 131, 136 (1951).

    Article  ADS  Google Scholar 

  38. B.W. Müller and T.T. Tsong, Field Ion Microscopy (Elsevier, New York, 1969).

    Google Scholar 

  39. D. H. Buckley, Surface Effects in Adhesion, Friction, Wear, and Lubrication, (Elsevier, Amsterdam, 1981).

    Google Scholar 

  40. R. J. Walko, Surface Sci. 70, 302 (1978).

    Article  ADS  Google Scholar 

  41. H.-W. Fink, IBM J. Res. Develop. 30, 460 (1986); Physica Scripta 38, 260 (1988).

    Article  Google Scholar 

  42. C. M. Mate, M. R. Lorenz, and V. J. Novotny, J. Chem. Phys. 90, 7550 (1989).

    Article  ADS  Google Scholar 

  43. C. M. Mate and V. J. Novotny, J. Chem. Phys. 94, 8420 (1991).

    Article  ADS  Google Scholar 

  44. G. S. Blackman, C. M. Mate, and M. R. Philpott, Phys. Rev. Lett. 65, 2270 (1990).

    Article  ADS  Google Scholar 

  45. N. A. Burnham, D. D. Dominguez, R. L. Mowery, and R. J. Colton, Phys. Rev. Lett. 64, 1931 (1990).

    Article  ADS  Google Scholar 

  46. J. P. Rabe and S. Bucholz, Phys. Rev. Lett. 66, 2096 (1991).

    Article  ADS  Google Scholar 

  47. C. Schonenberger and S. F. Alvarado, Phys. Rev. Lett. 65, 3162 (1990).

    Article  ADS  Google Scholar 

  48. B. D. Terris, J.E. Stern, D. Rugar, and H. J. Mamin, Phys. Rev. Lett. 63, 2669 (1989)

    Article  ADS  Google Scholar 

  49. F. Saurenbach and B. D. Terris, Trans. IEEE-IAS, Jan/Feb. 1992, to be published.

    Google Scholar 

  50. D. M. Bigler and E. K. Schweizer, Nature 344, 524 (1990).

    Article  ADS  Google Scholar 

  51. J. B. Sokoloff, Phys. Rev. B42 (1990) 760.

    ADS  Google Scholar 

  52. I. L. Singer, R. N. Bolster, J. Wegand, S. Fayeulle and B. C. Stupp, Appl. Phys. Lett. 57 (1990) 995.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

McClelland, G.M., Glosli, J.N. (1992). Friction at the Atomic Scale. In: Singer, I.L., Pollock, H.M. (eds) Fundamentals of Friction: Macroscopic and Microscopic Processes. NATO ASI Series, vol 220. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2811-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2811-7_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5249-8

  • Online ISBN: 978-94-011-2811-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics