Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 225))

  • 486 Accesses

Abstract

Circulating fluidised bed combustors are increasingly commonly used for environmentally sound steam generation from fossil fuels and other low value energy sources. Low uniform combustion temperatures and air staging produce low NOx emissions, while sulphur oxides may be scrubbed cheaply by in-bed sorbent addition. However, optimal design of circulating fluidised bed boilers for maximum multifuel capability and turndown is hindered by a lack of fundamental understanding of the fluid and particle mechanics. This paper discusses how an understanding of the fluid mechanics may be used to scale-up from pilot plant systems to full scale combustors. Key engineering aspects, geometric optimisation, fluid mechanics scale-up, and heat transfer coefficient prediction are each discussed. Observed pollutant formation trends are also rationalised in terms of the solids distributions in the circulating fluidised bed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bader, R., Findlay, J. and Knowlton, T.M. (1988) “Gas/solids flow patterns in a 30.5 cm diameter circulating fluidized bed”, in P.Basu and J.F.Large (eds.), Circulating Fluidized Bed Technology II, Pergamon Press, Oxford, pp. 123–137.

    Google Scholar 

  • Brereton, C., “Fluid Mechanics of High Velocity Fluidised Beds”, Ph.D. Dissertation, University of British Columbia, 1987.

    Google Scholar 

  • Brereton, C. and Grace, J.R. (1992) “Microstructural aspects of the behaviour of circulating fluidised beds”, submitted for publication.

    Google Scholar 

  • Brereton, C., Grace, J.R. and Yu, J. (1988) “Axial gas mixing in a circulating fluidised bed”, in P.Basu and J.F.Large (eds.), Circulating Fluidized Bed Technology II, Pergamon Press, Oxford, pp. 307–314.

    Google Scholar 

  • Brereton, C.M.H., Lim, C.J., Legros, R., Zhao, J., Li, H. and Grace, J.R. (1991) “Circulating fluidised bed combustion of a high-sulphur Eastern Canadian coal”, Can.J.Chem.Eng., Vol.69, 852–859.

    Article  CAS  Google Scholar 

  • Chen, J.C., Cimini, R.J. and Dou, S.-S. (1988) “A theoretical model for simultaneous convective and radiative heat transfer in circulating fluidised beds”, in P.Basu and J.F.Large (eds.), Circulating Fluidized Bed Technology II, Pergamon Press, Oxford, pp. 255–262.

    Google Scholar 

  • deLasa, H.I. and Grace, J.R. (1979) “The influence of the freeboard region in a fluidized bed catalytic cracking regenerator”, AIChE Journal, Vol. 25, 984–991.

    Article  Google Scholar 

  • George, S.E. and Grace, J.R. (1982) “Heat transfer to horizontal tubes in the freeboard region of a gas-fluidized bed”, AIChE Journal, Vol. 28, 759–765.

    Article  CAS  Google Scholar 

  • Grace, J.R., Brereton, C.M.H, Lim, C.J., Legros, R., Zhao, J., Senior, R.C., Wu, R.L. and Engman, R. (1990) “Circulating fluidised bed combustion of Western Canadian fuels”, EMR Canada report 52SS.23440-7-9136.

    Google Scholar 

  • Hartge, E.U., Rensner, D. and Werther, J. (1988) “Solids concentration and velocity patterns in circulating fluidised beds”, in P.Basu and J.F.Large (eds.), Circulating Fluidized Bed Technology II, Pergamon Press, Oxford, pp. 165–180.

    Google Scholar 

  • Herb, B., Tuzla, K. and Chen, J.C. (1989) “Distribution of solid concentrations in circulating fluidized beds”, in J.R.Grace, L.W.Shemilt and M.A.Bergougnou (eds.), Fluidization VI, Engng. Foundation, New York, pp. 65–72.

    Google Scholar 

  • Kobro, H. and Brereton, C. (1986) “Control and fuel flexibility of circulating fluidised beds”, in P.Basu (ed.), Circulating Fluidized Bed Technology, Pergamon Press, Toronto, pp. 263–272.

    Google Scholar 

  • Leckner, B. (1991) “Heat transfer in circulating fluidised bed boilers”, in P.Basu, M.Horio and M.Hasatani (eds.), Circulating Fluidized Bed Technology III, Pergamon Press, Oxford, pp. 27–38.

    Google Scholar 

  • Li, Y. and Kwauk, M. (1980) “The dynamics of fast fluidisation”, in J.R.Grace and J.M.Matsen (eds.), Fluidization, Plenum Press, New York, pp. 537–544.

    Chapter  Google Scholar 

  • Senior, R.C. and Brereton, C. (1990) “Modelling of circulating fluidised bed flow structure and heat transfer”, report to Studsvik Energy, Sweden.

    Google Scholar 

  • Senior, R.C. and Brereton, C. (1992) “Modelling of circulating fluidised bed solids flow and distribution”, Chem.Eng.Sci. Vol.47, No.2, pp.281–296, 1992.

    Article  CAS  Google Scholar 

  • Weinstein, H. and Li, J. (1989) “An evaluation of the actual density in the acceleration section of vertical risers”, Powd.Technol. Vol. 57, 77–79.

    Article  CAS  Google Scholar 

  • Wu, R.L., Grace, J.R., Lim, C.J. and Brereton, C.M.H. (1989a) “Suspension to surface heat transfer in a circulating fluidized bed combustor”, AIChE Journal, Vol.35, 1635–1691.

    Google Scholar 

  • Wu, R.L. Lim, C.J. and Grace, J.R. (1989b) “The measurement of instantaneous local heat transfer coefficients in a circulating fluidized bed”, Can.J.Chem.Eng. Vol.67, 301–307.

    Article  CAS  Google Scholar 

  • Wu, R.L., Lim, C.J., Chaouki, J. and Grace, J.R. (1987) “Heat transfer from a circulating fluidized bed combustor to membrane waterwall surfaces”, AIChE Journal, Vol.33, 1888–1893.

    Article  CAS  Google Scholar 

  • Wu, R.L., Lim, C.J., Grace, J.R. and Brereton, C.M.H. (1991) “Instantaneous local heat transfer and hydrodynamics in a circulating fluidized bed”, Int.J.Heat Mass Transfer, Vol.34, 2019–2027.

    Article  CAS  Google Scholar 

  • Yang, Y.L., Jin, Y., Yu, Z.Q., Wang, Z.W. and Bai, D.R. (1991) “The radial distribution of local particle velocity in a dilute circulating fluidized bed”, in P.Basu, M.Horio and M.Hasatani (eds.), Circulating Fluidized Bed Technology III, Pergamon Press, Oxford, pp. 201–206.

    Google Scholar 

  • Yerushalmi, J. and Avidan, A.A. (1985) “High-velocity fluidization”, Chap.7 in J.F.Davidson, R.Clift and D.Harrison (eds.), Fluidization, 2nd ed., Academic Press, London, pp. 225–291.

    Google Scholar 

  • Yerushalmi, J., Cankurt, N.T., Geldart, D. and Liss, B. (1978) “Flow regimes in vertical gas-solid contact systems”, AIChE Symp. Ser., Vol.74, No.176, 1–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brereton, C., Grace, J.R., Lim, C.J., Zhu, J. (1992). Engineering Aspects of Recirculating Fluidised Bed Combustion. In: de Lasa, H.I., Doğu, G., Ravella, A. (eds) Chemical Reactor Technology for Environmentally Safe Reactors and Products. NATO ASI Series, vol 225. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2747-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2747-9_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5219-1

  • Online ISBN: 978-94-011-2747-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics